20 Repositories
Python Contra-OOD Libraries
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery
🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the
Out of Distribution Detection on Natural Adversarial Examples
OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht
Real life contra a deep learning project built using mediapipe and openc
real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI
Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab
OOD Generalization and Detection (ACL 2020)
Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C
The Official Repository for "Generalized OOD Detection: A Survey"
Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec
The Official Repository for "Generalized OOD Detection: A Survey"
Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec
Out-of-distribution detection using the pNML regret. NeurIPS2021
OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.
Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"
This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and
[ICCV 2021 Oral] Deep Evidential Action Recognition
DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"
ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.
Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,
Github for the conference paper GLOD-Gaussian Likelihood OOD detector
FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'
HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020
Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T