Traceback (most recent call last): File "train_model.py", line 15, in <module> magikarp.train() File "/Users/johndpope/Documents/tensorFlowWorkspace/AdversarialChess/model.py", line 215, in train self.create_model() File "/Users/johndpope/Documents/tensorFlowWorkspace/AdversarialChess/model.py", line 197, in create_model self.create_dis_model() File "/Users/johndpope/Documents/tensorFlowWorkspace/AdversarialChess/model.py", line 187, in create_dis_model self.d_pred_real = self.d_predict(tf.concat(1, [self.person_board_1, self.person_board_2]), self.p_keep) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1029, in concat dtype=dtypes.int32).get_shape( File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 639, in convert_to_tensor as_ref=False) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 704, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 113, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 102, in constant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 370, in make_tensor_proto _AssertCompatible(values, dtype) File "/Users/johndpope/miniconda2/envs/tensorflow-p2/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 302, in _AssertCompatible (dtype.name, repr(mismatch), type(mismatch).__name__)) TypeError: Expected int32, got list containing Tensors of type '_Message' instead.
was there a specific tensorflow version you used?