Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Overview

Text Summarization

WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

In this project, I fine tune T5 model on Extreme Summarization (XSum) Dataset achieving a rouge2 f score of 9.5% on test data. Further I discuss the drawbacks of ngram based metrics as well as contextual word metrics.

Finally, I propose use of Weighted Contextual N-gram (WCN) method – an alternative metric which can be more effective for evaluation of text generation tasks.

The complete documentation of the project can be found here

Dataset

I use the Extreme Summarization (XSum) Dataset. The dataset can be downloaded from here

The dataset consists of BBC articles and accompanying single sentence summaries. Specifically, each article is prefaced with an introductory sentence (aka summary) which is professionally written, typically by the author of the article.

There are two features in this dataset:
(1) document: Input news article.
(2) summary: Onesentence summary of the article.

The idea is to generate a short, one-sentence news summary answering the question ”What is the article about?”. There are in total 226k samples: 204,045 samples for training data, 11,332 samples for validation data and 11,334 samples for test data. The average number of words in a document is 431.07 (19.77 sentences) and the average number of words in a summary is 23.26.

Code

The source code for this project can be found at text_summarization.ipynb.

You might also like...
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Official implementation of NeurIPS 2021 paper
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

Owner
Aditya Shah
MS CS @ Virginia Tech | NLP | Deep Learning | Founder @artofquantum
Aditya Shah
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 3, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

null 105 Dec 23, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

null 100 Dec 29, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's applied reinforcement learning platform, Reagent.

Bandit ML 51 Dec 22, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 2, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

null 71 Oct 25, 2022