NLP topic mdel LDA - Gathered from New York Times website

Overview

NLP-topic-mdel-LDA

1. Dataset

the dataset were gathered from New York Times website, Energy section. (nytimes.com). the Website offers the journals by categories, and I used the category energy. For the text mining, I had to check the structure of website. The websiste basically using HTML base, and had four big frames. To create the crawler, I used selenium chrome web driver and python. For the first put the url and access address. In this step, I already put the url which is energy section so that I can avoid additional step. The journals I wanted to crawl is only for renewable energy, so I used send_keys function from BeautifulSoup. Then make the sorting option as newest. This sorting option was found as Xpath from chrome instpection. Then use the selenium to scroll down and at the end download the date, title and headline and save as csv file.

This dataset has date, title and headline of the journals related renewable energy from Dec 11 2020 to Feb 26, 2021, and it has total 110 rows without missing values. The ‘news’ column is combination of ‘title’ column and ‘headline’ column. for the topic modeling, mostly the ‘news’ column has been used.

2. text pre-processing

  1. special characters, numbers and punctuation marks are removed. For this step, python replace function has been applied. Every character excludes English al-phabet (a-zA-Z) is replaced to blank. (“ “).

  2. Second step is removing the short length words. In this project, the words have less than 3 alphabet character are assumed as not useful information. For example, “if”, “it”, “of”, “at”. For this step, for loop and if statement has been applied.

  3. convert capital letters to lower letters. By this steps, the total number of words can be re-duced. For this step, apply function has been applied

3. LDA

LDA is an unsupervised machine learning model that find topics from the literature and one of the representative algorithms of topic modeling. in this code, gensim library has been applied for the model.

4. Visualization

For the visualization of LDA model, pyLDAvis package has been applied. The distance of each circle shows how different each topic is from each other. If the two circles overlapped, it indicates that these two topics are similar topics

By clicking each circle, each words term frequency is shown as bar chart representation. The blue bar indicates overall term frequency and the red bar indicates estimated term frequency within the selected topic, and the bar chart is sorted by the red line LDA is an unsupervised machine learning model that find topics from the literature and one of the representative algorithms of topic modeling

image

You might also like...
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

Top2Vec is an algorithm for topic modeling and semantic search.
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

 ETM - R package for Topic Modelling in Embedding Spaces
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Concept Modeling: Topic Modeling on Images and Text
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

Owner
null
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 7, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details ?? List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 1, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 3, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

null 2 Aug 29, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

null 2 Mar 4, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

null 43 Jan 5, 2023
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022