Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Overview

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking
Hau Chu, Jia-Hong Lee, Yao-Chih Lee, Ching-Hsien Hsu, Jia-Da Li, Chu-Song Chen
2021 CVPR B-AMFG Workshop

Note: It's a project of AI^2 Lab. The code will be update in here while there is a new version.

Installation

  • Python 3.6+

  • Cuda 9.0

  • Cudnn 7

  • gcc 5 & g++ 5 (for Ubuntu 18.04)

$ sudo apt install gcc-5 g++-5
$ sudo ln -s /usr/bin/gcc-6 /usr/local/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/bin/g++
  • Conda Env
$ conda create -n venv python=3.6
$ conda activate venv
$ conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
$ pip install tensorflow_gpu==1.9.0
$ pip install -r requirements.txt
  • Git
$ sudo apt install git

Data preparation

Download datasets:

  1. Campus (http://campar.in.tum.de/Chair/MultiHumanPose)
  2. Shelf (http://campar.in.tum.de/Chair/MultiHumanPose)
  3. CMU Panoptic (https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox)

Dataset's camera_parameter.pickle download

The directory tree should look like below:

${ROOT}
    |-- CatchImage
        |-- CampusSeq1
        |   |-- Camera0
        |   |-- Camera1
        |   |-- Camera2
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Shelf
        |   |-- Camera0
        |   |-- ...
        |   |-- Camera4
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Panoptic
        |   |-- 160906_pizza1
            |   |-- 00_03 # hdImgs folder of 03 camera
            |   |-- 00_06 # hdImgs folder of 06 camera
            |   |-- ...
            |   |-- camera_parameter.pickle
            |   |-- hdPose_stage1_coco19
            |-- ...
    |-- src

Backend Models

Backend models, which is not our works, are released codes from others. We only did some small modifications to fit the format of our input/output. Put models in {ROOT}/src/backend

  1. YOLOv3
  2. HRNet

Run Codes

Demo

$cd src
python -W ignore testmodel.py --dataset CampusSeq1 # For Campus
python -W ignore testmodel.py --dataset Shelf # For Shelf
python -W ignore testmodel.py --dataset Panoptic # For Panoptic (sub-dataset can be modified in config)

Evaluation

$cd src
python -W ignore evalmodel.py --dataset CampusSeq1 
python -W ignore evalmodel.py --dataset Shelf

Campus PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 100.00 100.00 100.00 100.00
Torso 100.00 100.00 100.00 100.00
Upper arms 98.98 100.00 100.00 99.66
Lower arms 92.86 68.78 91.30 84.31
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 98.37 93.76 98.26 96.79

Shelf PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 94.98 100.00 91.30 95.43
Torso 100.00 100.00 100.00 100.00
Upper arms 100.00 100.00 96.27 98.76
Lower arms 98.21 77.03 96.27 90.50
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 99.14 95.41 97.64 97.39

Citation

@InProceedings{Chu_2021_CVPR,
    author    = {Chu, Hau and Lee, Jia-Hong and Lee, Yao-Chih and Hsu, Ching-Hsien and Li, Jia-Da and Chen, Chu-Song},
    title     = {Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {1472-1481}
}
You might also like...
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Towards Multi-Camera 3D Human Pose Estimation in Wild Environment
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

Official PyTorch implementation of
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Implementation of
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

Owner
null
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 4, 2023
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022