Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Related tags

Deep Learning Qcover
Overview
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences (BAQIS). Qcover supports fast output of optimal parameters in shallow QAOA circuits. It can be used as a powerful tool to assist NISQ processor to demonstrate application-level quantum advantages.

Getting started

Use the following command to complete the installation of Qcover

pip install Qcover

or

git clone https://github.com/BAQIS-Quantum/Qcover
pip install -r requirements.yml
python setup.py install

More example codes and tutorials can be found in the tests folder here on GitHub.

Examples

  1. Using algorithm core module to generate the ising random weighted graph and calculate it's Hamiltonian expectation
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQulacs
    from Qcover.optimizers import COBYLA
    
    node_num, edge_num = 6, 9
    p = 1
    nodes, edges = Qcover.generate_graph_data(node_num, edge_num)
    g = Qcover.generate_weighted_graph(nodes, edges)
    qulacs_bc = CircuitByQulacs()
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(g, p=p, optimizer=optc, backend=qulacs_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  2. Solving specific binary combinatorial optimization problems, Calculating the expectation value of the Hamiltonian of the circuit which corresponding to the problem. for example, if you want to using Qcover to solve a max-cut problem, just coding below:
    import numpy as np
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQiskit
    from Qcover.optimizers import COBYLA
    from Qcover.applications.max_cut import MaxCut
    node_num, degree = 6, 3
    p = 1
    mxt = MaxCut(node_num=node_num, node_degree=degree)
    ising_g = mxt.run()
    qiskit_bc = CircuitByQiskit(expectation_calc_method="statevector")
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=qiskit_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  3. If you want to customize the Ising weight graph model and calculate the ground state expectation with Qcover, you can use the following code
    import numpy as np
    import networkx as nx
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByTensor
    from Qcover.optimizers import COBYLA
    
    ising_g = nx.Graph()
    nodes = [(0, 3), (1, 2), (2, 1), (3, 1)]
    edges = [(0, 1, 1), (0, 2, 1), (3, 1, 2), (2, 3, 3)]
    for nd in nodes:
       u, w = nd[0], nd[1]
       ising_g.add_node(int(u), weight=int(w))
    for ed in edges:
        u, v, w = ed[0], ed[1], ed[2]
    ising_g.add_edge(int(u), int(v), weight=int(w))
    
    p = 2
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    ts_bc = CircuitByTensor()
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=ts_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()

How to contribute

For information on how to contribute, please send an e-mail to members of developer of this project.

Please cite

When using Qcover for research projects, please cite

  • Wei-Feng Zhuang, Ya-Nan Pu, Hong-Ze Xu, Xudan Chai, Yanwu Gu, Yunheng Ma, Shahid Qamar, Chen Qian, Peng Qian, Xiao Xiao, Meng-Jun Hu, and Done E. Liu, "Efficient Classical Computation of Quantum Mean Value for Shallow QAOA Circuits", arXiv:2112.11151 (2021).

Authors

The first release of Qcover was developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences.

Qcover is constantly growing and many other people have already contributed to it in the meantime.

License

Qcover is released under the Apache 2 license.

You might also like...
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

 RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Owner
null
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

null 117 Dec 13, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 6, 2023
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 9, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

null 43 Dec 26, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 5, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

null 302 Jan 5, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022