[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Overview

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Derek Lim*, Felix Hohne*, Xiuyu Li*, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim

Published at NeurIPS 2021

Here are codes to load our proposed datasets, compute our measure of homophily, and train various graph machine learning models in our experimental setup. We include an implementation of the new graph neural network LINKX that we develop.

Organization

main.py contains the main full batch experimental scripts.

main_scalable.py contains the minibatching experimental scripts.

parse.py contains flags for running models with specific settings and hyperparameters.

dataset.py loads our datasets.

models.py contains implementations for graph machine learning models, though C&S (correct_smooth.py, cs_tune_hparams.py) are in separate files. Running several of the GNN models on larger datasets may require at least 24GB of VRAM. Our LINKX model is implemented in this file.

homophily.py contains functions for computing homophily measures, including the one that we introduce in our_measure.

experiments/ contains the bash files to reproduce full batch experiments.

scalable_experiments/ contains the bash files to reproduce minibatching experiments.

wiki_scraping/ contains the Python scripts to reproduce the "wiki" dataset by querying the Wikipedia API and cleaning up the data.

Datasets

Screenshot 2021-06-03 at 6 04 01 PM

As discussed in the paper, our proposed datasets are "genius", "twitch-gamer", "fb100", "pokec", "wiki", "arxiv-year", and "snap-patents", which can be loaded by load_nc_dataset in dataset.py by passing in their respective string name. Many of these datasets are included in the data/ directory, but wiki, twitch-gamer, snap-patents, and pokec are automatically downloaded from a Google drive link when loaded from dataset.py. The arxiv-year dataset is downloaded using OGB downloaders. load_nc_dataset returns an NCDataset, the documentation for which is also provided in dataset.py. It is functionally equivalent to OGB's Library-Agnostic Loader for Node Property Prediction, except for the fact that it returns torch tensors. See the OGB website for more specific documentation. Just like the OGB function, dataset.get_idx_split() returns fixed dataset split for training, validation, and testing.

When there are multiple graphs (as in the case of fb100), different ones can be loaded by passing in the sub_dataname argument to load_nc_dataset in dataset.py. In particular, fb100 consists of 100 graphs. We only include ["Amherst41", "Cornell5", "Johns Hopkins55", "Penn94", "Reed98"] in this repo, although others may be downloaded from the internet archive. In the paper we test on Penn94.

References

The datasets come from a variety of sources, as listed here:

  • Penn94. Traud et al 2012. Social Structure of Facebook Networks
  • pokec. Leskovec et al. Stanford Network Analysis Project
  • arXiv-year. Hu et al 2020. Open Graph Benchmark
  • snap-patents. Leskovec et al. Stanford Network Analysis Project
  • genius. Lim and Benson 2020. Expertise and Dynamics within Crowdsourced Musical Knowledge Curation: A Case Study of the Genius Platform
  • twitch-gamers. Rozemberczki and Sarkar 2021. Twitch Gamers: a Dataset for Evaluating Proximity Preserving and Structural Role-based Node Embeddings
  • wiki. Collected by the authors of this work in 2021.

Installation instructions

  1. Create and activate a new conda environment using python=3.8 (i.e. conda create --name non-hom python=3.8)
  2. Activate your conda environment
  3. Check CUDA version using nvidia-smi
  4. run bash install.sh cu110, replacing cu110 with your CUDA version (CUDA 11 -> cu110, CUDA 10.2 -> cu102, CUDA 10.1 -> cu101). We tested on Ubuntu 18.04, CUDA 11.0.

Running experiments

  1. Make sure a results folder exists in the root directory.
  2. Our experiments are in the experiments/ and scalable_experiments/ directory. There are bash scripts for running methods on single and multiple datasets. Please note that the experiments must be run from the root directory, e.g. (bash experiments/mixhop_exp.sh snap-patents). For instance, to run the MixHop experiments on arxiv-year, use:
bash experiments/mixhop_exp.sh arxiv-year

To run LINKX on pokec, use:

bash experiments/linkx_exp.sh pokec

To run LINK on Penn94, use:

bash experiments/link_exp.sh fb100 Penn94

To run GCN-cluster on twitch-gamers, use:

bash scalable_experiments/gcn_cluster.sh twitch-gamer

To run LINKX minibatched on wiki, use

bash scalable_experiments/linkx_exp.sh wiki

To run LINKX on Geom-GCN with full hyperparameter grid on chameleon, use

bash experiments/linkx_tuning.sh chameleon
Comments
  • Wrong test result on Cora

    Wrong test result on Cora

    When I modified the shell file for the Cora dataset, and ran the command: bash experiments/gcn_exp.sh Cora. The test results only get around 47~48. And we all know that GCN as a classical model will get results around at 81.

    I try hard to debug and modify the codes to get what’s wrong. But still be confused. Could you please give me an answer or a solution?

    opened by llooFlashooll 8
  • Can't Reproduce LINKX Full Batch results

    Can't Reproduce LINKX Full Batch results

    Hi, I try to reproduce LINKX Full-Batch results on Actor/Cornell/Texas/arxiv-year dataset, but I only get 32 test accuracy for Actor dataset, 64 for Cornell dataset, 67 for Texas dataset, 54 for arxiv-year dataset.

    I follow the parameters as you show in the paper: hidden_channels ∈ {16, 32, 128, 256}, MLP_final ∈ {1, 2, 3}, MLP_A ∈ {1, 2}, MLP_X ∈ {1, 2}, learning rate ∈ {0.05, 0.01, 0.002}, dropout ∈ {0.0, 0.5}, I try many times to Combination these parameters, But I failed to reproduce the results. Could you please show the parameters used in these datasets?

    opened by zrhhhhh123 5
  • pokec cannot be downloaded directly, either

    pokec cannot be downloaded directly, either

    Hi authors,

    Again I found pokec cannot be downloaded using your gdd script. The file I downloaded is an html file, from that I can download anyway, but just let you guys know.

    The html file:

    <!DOCTYPE html><html><head><title>Google Drive - Download warning</title><meta http-equiv="content-type" content="text/html; charset=utf-8"/><style nonce="uH/xyEi4EXe5R83mihluqg">/* Copyright 2022 Google Inc. All Rights Reserved. */
    .goog-inline-block{position:relative;display:-moz-inline-box;display:inline-block}* html .goog-inline-block{display:inline}*:first-child+html .goog-inline-block{display:inline}.goog-link-button{position:relative;color:#15c;text-decoration:underline;cursor:pointer}.goog-link-button-disabled{color:#ccc;text-decoration:none;cursor:default}body{color:#222;font:normal 13px/1.4 arial,sans-serif;margin:0}.grecaptcha-badge{visibility:hidden}.uc-main{padding-top:50px;text-align:center}#uc-dl-icon{display:inline-block;margin-top:16px;padding-right:1em;vertical-align:top}#uc-text{display:inline-block;max-width:68ex;text-align:left}.uc-error-caption,.uc-warning-caption{color:#222;font-size:16px}#uc-download-link{text-decoration:none}.uc-name-size a{color:#15c;text-decoration:none}.uc-name-size a:visited{color:#61c;text-decoration:none}.uc-name-size a:active{color:#d14836;text-decoration:none}.uc-footer{color:#777;font-size:11px;padding-bottom:5ex;padding-top:5ex;text-align:center}.uc-footer a{color:#15c}.uc-footer a:visited{color:#61c}.uc-footer a:active{color:#d14836}.uc-footer-divider{color:#ccc;width:100%}</style><link rel="icon" href="null"/></head><body><div class="uc-main"><div id="uc-dl-icon" class="image-container"><div class="drive-sprite-aux-download-file"></div></div><div id="uc-text"><p class="uc-warning-caption">Google Drive has detected issues with your download</p><p class="uc-warning-subcaption">This file is too large for Google to scan for viruses.</p><p class="uc-warning-subcaption">This file is executable and may harm your computer.</p><p class="uc-warning-subcaption"><span class="uc-name-size"><a href="/open?id=1dNs5E7BrWJbgcHeQ_zuy5Ozp2tRCWG0y">pokec.mat</a> (1.3G)</span></p><form id="downloadForm" action="https://docs.google.com/uc?export=download&amp;id=1dNs5E7BrWJbgcHeQ_zuy5Ozp2tRCWG0y&amp;confirm=t" method="post"><input type="submit" id="uc-download-link" class="goog-inline-block jfk-button jfk-button-action" value="Download anyway"/></form></div></div><div class="uc-footer"><hr class="uc-footer-divider"></div></body></html>
    
    opened by devnkong 4
  • Datasets clarification

    Datasets clarification

    Hey authors,

    Thanks for the great work!

    I saw you people have another repo for a WWW paper. Are the datasets identical? Which repo shall I use?

    Also I haven't dived deeply into the specs of the datasets, could you inform me how are the input node features of the datasets are constructed?

    Thank you!

    opened by devnkong 2
  • about provided wiki dataset

    about provided wiki dataset

    Hi, for some reason, I can not use gdown to download dataset, so I choose to download wiki dataset provided in your github page. However, I find it doesn't match in the code. In code: image It seems that there are 3 files to be downloaded. While in in github page: image There are only 2 files with different names.

    opened by yangzhao1230 0
  • switch to gdown to download large files

    switch to gdown to download large files

    This PR switches google_drive_downloader to gdown for downloading data from Google Drive, aiming to solve the large files downloading issue of the python script mentioned in #4, #5, https://github.com/CUAI/Non-Homophily-Benchmarks/issues/2.

    opened by Xiuyu-Li 0
  • Running issue of LINKX model

    Running issue of LINKX model

    Hello,

    I got an issue of running LINKX model for scalable experiments. In particular, in the forward function of LINKX model, it needs to construct a sparse tensor (line 39, models.py), whose dimension is set to (m, self.num_nodes). m is the number of unique nodes in the parsed data batch. However, since the edge indices are not relabeled, there are certainly some node indices exceeding the number of unique nodes (m value here). Is this a bug or I got some wrong here?

    Thanks!

    opened by VeritasYin 0
  • Embedding Method

    Embedding Method

    Hi, thank you for your great work! I have a question about Twitch dataset. you wrote: Vertex features are extracted based on the games played and liked, location, and streaming habits. but you didn't mention how you make node feature vectors with those features. Could you please let us know?

    Thanks,

    opened by HAI-syz 2
  • batch training on linkx

    batch training on linkx

    I tried to do experiment with linkx, but when I used row sampling that paper suggested does not work. I think it has some error in making sparse matrix. Do you have plan to fix it or update it?

    opened by KimKyuSik 5
Owner
Cornell University Artificial Intelligence
null
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 3, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

null 37 Dec 8, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 2, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 4, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

null 93 Nov 6, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

null 184 Dec 11, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 2, 2023
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
null 190 Jan 3, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 4, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

null 44 Sep 15, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 2, 2023
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 8, 2022