(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Overview

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing by Haoyu He, Jing Zhang, Qiming Zhang and Dacheng Tao.


Grapy-ML:

GPM


Getting Started:

Environment:

  • Pytorch = 1.1.0

  • torchvision

  • scipy

  • tensorboardX

  • numpy

  • opencv-python

  • matplotlib

Data Preparation:

You need to download the three datasets. The CIHP dataset and ATR dataset can be found in this repository and our code is heavily borrowed from it as well.

Then, the datasets should be arranged in the following folder, and images should be rearranged with the provided file structure.

/data/dataset/

Testing:

The pretrain models and some trained models are provided here for testing and training.

Model Name Description Derived from
deeplab_v3plus_v3.pth The Deeplab v3+'s pretrain weights
CIHP_pretrain.pth The reproduced Deeplab v3+ model trained on CIHP dataset deeplab_v3plus_v3.pth
CIHP_trained.pth GPM model trained on CIHP dataset CIHP_pretrain.pth
deeplab_multi-dataset.pth The reproduced multi-task learning Deeplab v3+ model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_v3plus_v3.pth
GPM-ML_multi-dataset.pth Grapy-ML model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_multi-dataset.pth
GPM-ML_finetune_PASCAL.pth Grapy-ML model finetuned on PASCAL-Person-Part dataset GPM-ML_multi-dataset.pth

To test, run the following two scripts:

bash eval_gpm.sh
bash eval_gpm_ml.sh

Training:

GPM:

During training, you first need to get the Deeplab pretrain model(e.g. CIHP_dlab.pth) on each dataset. Such act aims to provide a trustworthy initial raw result for the GSA operation in GPM.

bash train_dlab.sh

The imageNet pretrain model is provided in the following table, and you should swith the dataset name and target classes to the dataset you want in the script. (CIHP: 20 classes, PASCAL: 7 classes and ATR: 18 classes)

In the next step, you should utilize the Deeplab pretrain model to further train the GPM model.

bash train_gpm.sh 

It is recommended to follow the training settings in our paper to reproduce the results.

GPM-ML:

Firstly, you can conduct the deeplab pretrain process by the following script:

bash train_dlab_ml.sh

The multi-dataset Deeplab V3+ is transformed as a simple multi-task task.

Then, you can train the GPM-ML model with the training set from all three datasets by:

bash train_gpm_ml_all.sh

After this phase, the first two levels of the GPM-ML model would be more robust and generalized.

Finally, you can try to finetune on each dataset by the unified pretrain model.

bash train_gpm_ml_pascal.sh

Citation:

@inproceedings{he2020grapy,
title={Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhang, Qiming and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}

Maintainer:

[email protected]

You might also like...
(AAAI 2021) Progressive One-shot Human Parsing
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

This is an official implementation for the WTW Dataset in
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

Comments
  • Could you please provide your pascal-person-part dataset?

    Could you please provide your pascal-person-part dataset?

    I have downloaded many versions of the pascal-person-part dataset. But I still failed to prepare well of it and cannot reproduce the same results with yours.

    Could you please provide your pascal-person-part dataset?Thank you so much.

    opened by Minssnail 2
  • License

    License

    You state in your paper that this is publicly available. Is this MIT license?

    https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository

    opened by hazel0504 1
  • Could I talk with you about this paper?

    Could I talk with you about this paper?

    Thank you for this work, base on it, I add some tricks, the mIoU on CIHP test dataset can be 67.66, I want to talk with you about this paper,could you add me wecha? Thanks!

    opened by rxmao 0
Owner
null
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 7, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

null 184 Dec 11, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022