Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

Overview

🚀 If it helps you, click a star!

Update log

  • 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-uploaded code
  • 2021.04.09 Re-upload the code, "V1 Commit"
  • 2021.04.22 update torch distributed training
  • Ongoing update .....

1. Display (Cityscapes)

  • Using model DDRNet 1525 test sets, official MIOU =78.4069%
Average results
Class results1
Class results2
Class results3
  • Comparison of the original and predicted images
origin
label
predict

2. Install

pip install -r requirements.txt
Experimental environment:

  • Ubuntu 16.04 Nvidia-Cards >= 1
  • python==3.6.5
  • See Dependency Installation Package for details in requirement.txt

3. Model

All the modeling is done in builders/model_builder.py

  • FCN
  • FCN_ResNet
  • SegNet
  • UNet
  • BiSeNet
  • BiSeNetV2
  • PSPNet
  • DeepLabv3_plus
  • HRNet
  • DDRNet
Model Backbone Val mIoU Test mIoU Imagenet Pretrain Pretrained Model
PSPNet ResNet 50 76.54% - PSPNet
DeeplabV3+ ResNet 50 77.78% - DeeplabV3+
DDRNet23_slim - DDRNet23_slim_imagenet
DDRNet23 - DDRNet23_imagenet
DDRNet39 - 79.63% - DDRNet39_imagenet DDRNet39
Updating more model.......

4. Data preprocessing

This project enables you to expose data sets: CityscapesISPRS
The data set is uploaded later .....
Cityscapes data set preparation is shown here:

4.1 Download the dataset

Download the dataset from the link on the website, You can get *leftImg8bit.png suffix of original image under folder leftImg8bit, a) *color.pngb) *labelIds.pngc) *instanceIds.png suffix of fine labeled image under folder gtFine.

*leftImg8bit.png          : the origin picture
a) *color.png             : the class is encoded by its color
b) *labelIds.png          : the class is encoded by its ID
c) *instanceIds.png       : the class and the instance are encoded by an instance ID

4.2 Onehot encoding of label image

The real label gray scale image Onehot encoding used by the semantic segmentation task is 0-18, so the label needs to be encoded. Using scripts dataset/cityscapes/cityscapes_scripts/process_cityscapes.py to process the image and get the result *labelTrainIds.png. process_cityscapes.py usage: Modify 486 lines `Cityscapes_path'is the path to store your own data.

  • Comparison of original image, color label image and gray label image (0-18)
***_leftImg8bit
***_gtFine_color
***_gtFine_labelTrainIds
  • Local storage path display /data/open_data/cityscapes/:
data
  |--open_data
        |--cityscapes
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******

4.3 Generate image path

  • Generate a txt containing the image path
    Use script dataset/generate_txt.py to generate the path txt file containing the original image and labels. A total of 3 txt files will be generated: cityscapes_train_list.txtcityscapes_val_list.txtcityscapes_test_list.txt, and copy the three files to the dataset root directory.
data
  |--open_data
        |--cityscapes
               |--cityscapes_train_list.txt
               |--cityscapes_val_list.txt
               |--cityscapes_test_list.txt
               |--leftImg8bit
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
               |--gtFine
                    |--train
                        |--cologne
                        |--*******
                    |--val
                        |--*******
                    |--test
                        |--*******
  • The contents of the txt are shown as follows:
leftImg8bit/train/cologne/cologne_000000_000019_leftImg8bit.png gtFine/train/cologne/cologne_000000_000019_gtFine_labelTrainIds.png
leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png
..............
  • The format of the txt are shown as follows:
origin image path + the separator '\t' + label path +  the separator '\n'

TODO.....

5. How to train

sh train.sh

5.1 Parameters

python -m torch.distributed.launch --nproc_per_node=2 \
                train.py --model PSPNet_res50 --out_stride 8 \
                --max_epochs 200 --val_epochs 20 --batch_size 4 --lr 0.01 --optim sgd --loss ProbOhemCrossEntropy2d \
                --base_size 768 --crop_size 768  --tile_hw_size 768,768 \
                --root '/data/open_data' --dataset cityscapes --gpus_id 1,2

6. How to validate

sh predict.sh
Comments
  • size doesn't match error when run the train.py

    size doesn't match error when run the train.py

    sorry to disturb you, when i run train.py, it goes wrong, and i print the size of the two tensor, there are same, i can't find the resolution, how to solve it? `******* Begining traing *******


    Epoch 0/300: 0%| | 0/909 [00:00<?, ?it/s]/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py:1350: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.") Traceback (most recent call last): File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 415, in train_model(args) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 293, in train_model lossTr, lr = train(args, trainLoader, model, criteria, optimizer, epoch) File "/home/yeluyue/dl/bottle_Segmentation/train.py", line 117, in train loss = criterion(output, labels) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/home/yeluyue/dl/bottle_Segmentation/tools/loss.py", line 27, in forward return self.loss(outputs, targets) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/modules/loss.py", line 498, in forward return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction) File "/usr/local/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py", line 2047, in binary_cross_entropy new_size = _infer_size(target.size(), weight.size()) RuntimeError: The size of tensor a (512) must match the size of tensor b (2) at non-singleton dimension 2`

    opened by lj107024 4
  • AttributeError in HRNet

    AttributeError in HRNet

    When I run ./model/HRNet.py on Ubuntu 18.04, torch 1.8.0+cu111, the error raise as follows,

    /home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py:329: DeprecationWarning: np.int is a deprecated alias for the builtin int. To silence this warning, use int by itself. Doing this will not modify any behavior and is safe. When replacing np.int, you may wish to use e.g. np.int64 or np.int32 to specify the precision. If you wish to review your current use, check the release note link for additional information. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations last_inp_channels = np.int(np.sum(pre_stage_channels)) Traceback (most recent call last): File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 520, in summary(model, (3, 512, 512), device="cpu") File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 72, in summary model(*x) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/users/lwz/code/rice_seg/template/Segmentation-Pytorch/model/HRNet.py", line 447, in forward y_list = self.stage2(x_list) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torch/nn/modules/module.py", line 893, in _call_impl hook_result = hook(self, input, result) File "/home/vgc/anaconda3/envs/lwz37/lib/python3.7/site-packages/torchsummary/torchsummary.py", line 19, in hook summary[m_key]["input_shape"] = list(input[0].size()) AttributeError: 'list' object has no attribute 'size'

    opened by rrryan2016 2
  • bug about generate_txt.py

    bug about generate_txt.py

    in line 26 filename_gt = filename.replace('leftImg8bit', 'gtFine') should change to filename_gt = filename.replace('leftImg8bit', 'gtFine').replace('.png','_labelTrainIds.png') to produce the format of leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine_labelTrainIds.png

    the result will be leftImg8bit/train/cologne/cologne_000001_000019_leftImg8bit.png gtFine/train/cologne/cologne_000001_000019_gtFine.png before. And the program wont find the file.

    if I am wrong, plz tell me. Best wishes.

    opened by songzijiang 2
  • 使用ENet模型,在train时正常,在pridict时会出现超出内存。

    使用ENet模型,在train时正常,在pridict时会出现超出内存。

    在train时正常,在pridict时会出现: RuntimeError.CUDA out of memory. Tried to allocate 188.00 MiB (GPU 0; 6.00 GiB total capacity; 4.21 GiB already allocated; 63.85 MiB free; 81.86 MiB cached) 使用predict_sliding时会出现: 发生异常: TypeError init() got an unexpected keyword argument 'std' 请问怎么解决?

    opened by FelixJiao 2
  • Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bump opencv-python from 4.1.0.25 to 4.2.0.32

    Bumps opencv-python from 4.1.0.25 to 4.2.0.32.

    Release notes

    Sourced from opencv-python's releases.

    4.2.0.32

    OpenCV version 4.2.0.

    Changes:

    • macOS environment updated from xcode8.3 to xcode 9.4
    • macOS uses now Qt 5 instead of Qt 4
    • Nasm version updated to Docker containers
    • multibuild updated

    Fixes:

    • don't use deprecated brew tap-pin, instead refer to the full package name when installing #267
    • replace get_config_var() with get_config_vars() in setup.py #274
    • add workaround for DLL errors in Windows Server #264

    4.1.2.30

    OpenCV version 4.1.2.

    Changes:

    • Python 3.8 builds added to the build matrix
    • Support for Python 3.4 builds dropped (Python 3.4 is in EOL)
    • multibuild updated
    • minor build logic changes
    • Docker images rebuilt

    Notes:

    Please note that Python 2.7 enters into EOL phase in January 2020. opencv-python Python 2.7 wheels won't be provided after that.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bump opencv-python from 4.1.0.25 to 4.1.1.26

    Bumps opencv-python from 4.1.0.25 to 4.1.1.26.

    Release notes

    Sourced from opencv-python's releases.

    4.1.1.26

    OpenCV version 4.1.1.

    Changes:

    • FFmpeg has been compiled with https support on Linux builds #229
    • CI build logic related changes #197, #227, #228
    • Custom libjepg-turbo removed because it's provided by OpenCV #231
    • 64-bit Qt builds are now smaller #236
    • Custom builds should be now rather easy to do locally #235:
      1. Clone this repository
      2. Optional: set up ENABLE_CONTRIB and ENABLE_HEADLESS environment variables to 1 if needed
      3. Optional: add additional Cmake arguments to CMAKE_ARGS environment variable
      4. Run python setup.py bdist_wheel
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump numpy from 1.15.1 to 1.22.0

    Bump numpy from 1.15.1 to 1.22.0

    Bumps numpy from 1.15.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v1.0.0)
Owner
Deeachain
Graduate students from outer space
Deeachain
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 3, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark ?? ?? Based on MMsegmentation ?? ?? Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

null 16 Dec 12, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 7, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 4, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

null 5 Nov 21, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 2, 2021
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 7, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

null 32 Sep 21, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022