Another pytorch implementation of FCN (Fully Convolutional Networks)

Overview

FCN-pytorch-easiest

Trying to be the easiest FCN pytorch implementation and just in a get and use fashion

Here I use a handbag semantic segmentation for illustration on how to train FCN on your own dataset and just go to use. To train on your own dataset you just need to see in BagData.py which implements a dataloader in pytorch. What you actually need to do is providing the images file and the correspoding mask images. And for visualization in the training process I use visdom.

requirement

I have tested the code in pytorch 0.3.0.post4 in anaconda python 3.6 in ubuntu 14.04 with GTX1080 in cuda8.0

train

here three images pair is provided in folder last/ and last_msk/ . Here I want to do a handbag semantic segmentation which is stated as belows.

task

Firstly because visdom is used to visualize the training process, you need open another terminal and run

python -m visdom.server

Then you run in another terminal

python FCN.py

You can open your browser and goto localhost:8097 to see the visulization as following the first row is the prediction.

vis

deploy

and for deploy and inference I also provide a script inference.py. You should be careful about the model path. Bacause I did not provide the trained weights file. :-P

BTW, FCN.py is copy from other repo.

You might also like...
PyTorch implementation of
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

A PyTorch implementation of
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Comments
  • How to use inference.py?

    How to use inference.py?

    I can run the training phase and I've had the checkpoint file.

    Now the problem is how to use the provided inference.py. In that file, I see you generate a random input and use the pretrained model. What about loading a test image and running inference on it? How to do it specifically? Thanks.

    opened by tranvnhan 3
  • Used BCE - Loss but no sigmoid activation

    Used BCE - Loss but no sigmoid activation

    You have used BCE loss in your train file but I don't see you using sigmoid activation. Will that not affect anything as we use sigmoid activation when using BCE loss and Softmax when using Cross Entropy loss

    opened by Gunnvant 0
  • very bad testing output

    very bad testing output

    can you tell me please why this model gave me a very bad output segmented image? it trained successfully but when I am using the model to segment a new image or an image from your dataset it also gives me completely wrong output please help me

    opened by RokiaAbdeen 1
  • 你好,在FCN.py中有一行代码不是很理解,请指教

    你好,在FCN.py中有一行代码不是很理解,请指教

    你好,在FCN.py中有一行代码不是很理解,请指教 for layer in range(begin, end): x = self.features[layer](x) # print(x.shape) output["x%d"%(idx+1)] = xx=self.featureslayer表示什么意思

    opened by rw1995 3
Owner
Y. Dong
HUST Ph.D.
Y. Dong
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch >= 0.2.0 torchvision >= 0.1.8 fcn >= 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 7, 2023
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 9, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

null 472 Dec 22, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

null 111 Dec 27, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

null 39 Aug 2, 2021
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 9, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022