OMAMO: orthology-based model organism selection

Related tags

Deep Learning omamo
Overview

OMAMO: orthology-based model organism selection

workflow diagram

OMAMO is a tool that suggests the best model organism to study a biological process based on orthologous relationship between a species and human.

The user can consider several species as potential model organisms and the algorithm will rank them and report the output for a given biological process (searched as a GO term or a GO ID) is produced in the dataframe format.

Pipeline

Firstly, download the OMA dataset:

wget  https://omabrowser.org/All/OmaServer.h5  -O data/OmaServer.h5  #caution: 94GB

Secondly, using the file data/oma-species.txt find the five-letter UniProt code for species of interest. For example, consider three species Dicdyostelium discodeium , Neurospora crassa and Schizosaccharomyces pombe. Their UniProt codes are DICDI, NEUCR and SCHPO, respectively.

Then, run the code omamo_base.py for each species code (DICDI, NEUCR and SCHPO):

species="DICDI"
mkdir output; cd output

python3 ../omamo_base.py ../data/OmaServer.h5 ../data/go_positive_annotations.tsv ${species}

Once the code finished running, the outputs include ${species}2.csv files which should be combined to create a final dataframe using the code omamo_dataframe.py:

python3 omamo_dataframe.py output

where output is the name of the directory where the user wishes to save the output.

Finally, the output data frame is ready as a CSV file omamo_output_df.csv.

OMAMO Website

You can also visit the OMAMO website, where you can browse biological processes to study in 50 unicellular species.

Change log

Version 0.0.1

  • Initial release

Citation

Alina Nicheperovich, Adrian M Altenhoff, Christophe Dessimoz, Sina Majidian, "OMAMO: orthology-based model organism selection", submitted to Bioinformatics journal.

License

OMAMO is a free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

OMAMO is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with OMAMO. If not, see http://www.gnu.org/licenses/.

You might also like...
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Comments
  • Convert to proper python package

    Convert to proper python package

    This PR addresses issue #1 and cleans up the code. It is now an installable package named 'omamo' that we can push to pypi.

    • rewrite code as a package
    • include bumpversion config stuff
    • Bump version: 0.1.0 → 0.2.0
    • include go data into package
    • restore original columns in output csv file
    • update README with new way to run omamo
    • remove unndeeded debug print stmt
    • avoid duplicated genes in detail table
    • append as tuples, not list of tuples
    • adding gitignore
    • adding pyproject.toml file
    • fix pylint warnings
    • remove original (and now legacy) scripts in root folder
    • add publish workflow on release
    opened by alpae 0
Owner
Dessimoz Lab
Dessimoz Lab
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 7, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022