An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

Related tags

Deep Learning EVolve
Overview

EVolve

Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem.

Overview

EVolve is a linked mantle degassing and atmospheric growth code, which models the growth of a rocky planet's secondary atmosphere under the influence of volcanism.

Installation

EVolve is written in Python3, and is incompatible with Python 2.7. Two very useful tools to set up python environments:
Pip - package installer for Python
Anaconda - virtual environment manager

  1. Clone the repository with submodules and enter directory

    git clone --recurse-submodules [email protected]:pipliggins/evolve.git
    

    Note: If you don't clone with submodules you won't get the two modules used to run EVolve, the EVo volcanic degassing model and the FastChem equilibrium chemistry code.

  2. Compile FastChem:

    cd fastchem
    git submodules update --init --recursive
    mkdir build & cd build
    cmake -DUSE_PYTHON==ON ..
    make
    

    This will pull the pybind11 module required for the python bindings, and compile both the C++ code, and the python bindings which are used in EVolve to conect to FastChem.

    Note: FastChem is an external C++ module, used to compute atmospheric equilibrium chemistry. Therefore, to run on Windows, I recommend using WSL (Windows Subsystem for Linux) to make the process of compiling the C code easier. If you encounter installation issues relating to the cmake version, I found the accepted answer here to work for me. A list of the suggested terminal commands can also be found at the bottom of this README file.

  3. Install dependencies using either Pip install or Anaconda. Check requirements.txt for full details. If using Pip, install all dependencies from the main directory of EVolve using

    pip3 install -r requirements.txt
    

    Troubleshoot: The GMPY2 module requires several libraries (MPFR and MPC) which are not pre-loaded in some operating systems, particularly Windows. If the GMPY2 module does not install, or you have other install issues, try

    pip3 install wheel
    sudo apt install libgmp-dev libmpfr-dev libmpc-dev
    pip3 install -r requirements.txt
    

Running EVolve

EVolve can be run either with or without the FastChem equilibrium chemistry in the atmosphere. To run Evolve with FastChem, from the main directory of EVolve run

python evolve.py inputs.yaml --fastchem

The available tags are:

  • --fastchem ).This will use fastchem to run equilibrium chemistry in the atmosphere, producing more chemical species than the magma degassing model uses and enabling the atmospheric equilibrium temperature to be lower than magmatic.

  • --nocrust ).This option stops a crustal reservoir from being formed out of the degassed melt which has been erupted. Instead, the degassed melt and any volatiles remaining in it are re-incorporated back into the mantle. If this tag is NOT used, the mantle mass will gradually reduce as there is no mechanism for re-introducing the crustal material back into the mantle implemented here.

All the input models for EVolve, and the submodules EVo and FastChem are stored in the 'inputs' folder:

Filename Relevant module Properties
atm.yaml EVolve main Sets the pre-existing atmospheric chemistry and surface pressures + temperatures for the planet
mantle.yaml EVolve main Sets the initial planetary mantle/rocky body properties, including temperature, mass, fO2, the mantle volatile concentrations and the volcanic intrusive:extrusive ratio
planet.yaml EVolve main Sets generic planetary properties and important run settings, including planetary mass, radius, the amount of mantle melting occurring at each timestep and the size & number of timesteps the model will run.
chem.yaml EVo Contains the major oxide composition of the magma being input to EVo
env.yaml EVo Contains the majority of the run settings and volatile contents for the EVo run.
output.yaml EVo Stops any graphical input from EVo compared to it's default settings
config.input FastChem Sets the names and locations for input and output files for FastChem, and output settings
parameters.dat FastChem Location of elemental abundance files, and configuration parameters

Files highlighted in bold should be edited by the user; all others are optimied for EVolve and/or will be edited by the code as it is running. Explainations for each parameter setting in the EVolve files can be found at the bottom of this README file.

As EVolve runs, it creates and updates files in the outputs folder as follows:

Filename Data
atmosphere_out.csv Planetary surface pressure and atmospheric composition for tracked molecules in units of volume mixing ratios (actually mo fraction), calculated after each time step
mantle_out.csv Mantle volatile budget and fO2 after each timestep
volc_out.csv The final pressure iteration from the EVo output file in each timestep (storing melt volatile contents, atomic volatile contents, gas speciation in mol & wt fractions, etc)
fc_input.csv Generated if fastchem is selected: The input to FastChem after atmospheric mixing, and hydrogen escape if that is occuring, for each timestep.
fc_out.csv Generated if fastchem is selected: The results from FastChem after each timestep

Installation help for WSL

If you see an error saying that the installed version of cmake is too low to install FastChem, try these commands: Please note this is just a suggestion based on what worked for me, try these workarounds at your own risk!

sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates gnupg software-properties-common wget

wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -

sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'
sudo apt-get update

sudo apt-get install cmake
You might also like...
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Owner
Pip Liggins
3rd year PhD student studying Earth Sciences. I model volcanic degassing chemistry and its impact on planetary atmospheres.
Pip Liggins
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 3, 2023
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 8, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 4, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

null 54 Nov 25, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch >= 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 5, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

null 6 Jan 3, 2023