Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Overview

Price-Prediction-For-a-Dream-Home

ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL

  1. Import all the dependencies of the project
  2. Read dataset and observe features of the dataset carefully.
  3. The dataset has over eighty independent variables of dataype float, integer or object. My approach to handle so many features in a model is to plot a correlation matrix for variables and segregate the numerical variables with a stronger positive or negation correlation with the target variable. To visualise the magnitude of correlation a heatmap can also be plot. Correlation Plot
  4. The next step is feature engineering. This include removing null values and outliers from the dataset. The null values or NA values in dataset are observed carefully. Later, a normality curve is plot to observe the skewed behaviour of feature to choose right quantity for adjusting empty cells in dataset. Also, some of the variables have almost more than seventy percent instances as null values. Those features are dropped from the dataframe.
  5. Similary, The object datatype variables are append through the value count. That is the category with highest mode is used to substitue null values.
  6. Next step involve combining the two dataframes that is one that contain numerical variables and other that contain categorical variables together. The final dataframe is further proccessed by creating dummy variables to give as input train dataset.
  7. Now, the dataset is split using the train_test_split method of scikit learn.
  8. Train dataset is fed into the model for training by importing the Linear Regression model of scikit learn.
  9. The model is trained successfully!
  10. The sale price is predicted and displayed against true price for comparision. The predicted price values are very close to the actual values. OUTPUT DATAFRMAE
  11. NEXT, step involve model evaluation. In machine learning trained models are evaluated through cost functions. The most popular cost functions used tor evaluating linear regression based machine learning models is to use RMSE, MSE or MAE methods. Smaller the magnitude of cost function lesser is the residual of model or better is the model.
  12. Also, in machine learning a weight is associated to each feature. That very coefficient magnitude is calculated either using gradient descent or normal equation method. The magnitude of the coefficients for all the features is calculated.
  13. Finally, the evaluated model is stored in pickle.

--------------------X---------------------X--------------------X--------------------X--------------------X-------------------

You might also like...
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

An end-to-end regression problem of predicting the price of properties in Bangalore.
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

 House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

Toontown House CT Edition
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

A web application that provides real time temperature and humidity readings of a house.
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Owner
DIKSHA DESWAL
CO-ODD-DING IS FUN!
DIKSHA DESWAL
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 9, 2023
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 9, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.

ChemEngAI 40 Dec 27, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

null 0 Sep 9, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 5, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu >=20.04 Python >=3.7 System dependencie

Akash James 3 May 14, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

null 1 Jan 27, 2022