Neighborhood Reconstructing Autoencoders

Overview

Neighborhood Reconstructing Autoencoders

The official repository for (Lee, Kwon, and Park, NeurIPS 2021).

This paper proposes Neighborhood Reconstructing Autoencoders (NRAE), which is a graph-based autoencoder that explicitly accounts for the local connectivity and geometry of the data, and consequently learns a more accurate data manifold and representation.

Preview (synthetic data)

Figure 1: De-noising property of the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).
Figure 2: Correct local connectivity learned by the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).

Preview (rotated/shifted MNIST)

Figure 3: Generated sequences of rotated images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).
Figure 3: Generated sequences of shifted images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).

Environment

The project is developed under a standard PyTorch environment.

  • python 3.8.8
  • numpy
  • matplotlib
  • imageio
  • argparse
  • yaml
  • omegaconf
  • torch 1.8.0
  • CUDA 11.1

Running

python train_{X}.py --config configs/{A}_{B}_{C}.yml --device 0
  • X is either synthetic or MNIST
  • A is either AE, NRAEL, or NRAEQ
  • B is either toy or mnist
  • If B is toy, then C is either denoising or geometry_preserving. Elseif B is mnist, then C is either rotated or shifted.

Playing with the code

  • The most important parameters requiring tuning include: i) the number of nearest neighbors for graph construction num_nn and ii) kernel parameter lambda (you can find these parameters in configs/NRAEL_toy_denoising.yml for example).
  • We empirically observe that setting as include_center=True (when defining data loader) has performance advantange.
  • You can add a new type of 2d synthetic dataset in loader.synthetic_dataset.SyntheticData.get_data (currently, we have sincurve and swiss_roll).

Citation

If you found this library useful in your research, please consider citing:

@article{lee2021neighborhood,
  title={Neighborhood Reconstructing Autoencoders},
  author={Lee, Yonghyeon and Kwon, Hyeokjun and Park, Frank},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
You might also like...
Data Augmentation with Variational Autoencoders
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

 An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Owner
Yonghyeon Lee
Ph.D. Student in Robotics laboratory at the Seoul National University
Yonghyeon Lee
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

null 97 Dec 28, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

null 151 Dec 26, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 5, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 2, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

null 1 Oct 11, 2021