Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

Overview

mae-repo

PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https://github.com/lucidrains/vit-pytorch (for MAE architectures) and https://github.com/pengzhiliang/MAE-pytorch (for training loop).

prepare ImageNet1K datasets

To train MAE, one should prepare ImageNet_ILSVRC2012 and place ILSVRC2012_*.tar in the ${datasets_path}. To shorten the overhead of first run, one can manually untar the tarfile into train and val directories, as follow (refered to https://gist.github.com/BIGBALLON/8a71d225eff18d88e469e6ea9b39cef4).

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash

modify configuration file

To separate code and config, we try to split configurations to yaml file, located in configs directory, such as imagenet1k-vit-base.yml. One can modify 'model' setting following MAE and ViT to configure model architecture parameters of ViT-base, large and huge.

One can modify 'optim' for optimizer settings. And modify 'training' and 'data' for training settings. Note that, modify 'training:batch_size' to fit the GPU memory of one GPU card. Total batch_size is equal to batch_size multiplied by number of GPU cards.

train

CUDA_VISIBLE_DEVICES=0,1,2,3,5,6,7 OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 mae_test.py
--datasets_path ${datasets_path}
--config imagenet1k-vit-base.yml
--doc mae-vit-base16-dec8-512

ToDo lists

  • add pretrain mode
  • add fine-tunning mode
  • support mixed precision training
  • support distributed training
  • verify the correctness of this re-implementation
You might also like...
The official codes of
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Official repository for the paper
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

MADE (Masked Autoencoder Density Estimation) implementation in PyTorch
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

Owner
Peng Qiao
NUDT([email protected]
Peng Qiao
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 4, 2023
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

null 36 Oct 30, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training [Arxiv] VideoMAE: Masked Autoencoders are Data-Efficient Learne

Multimedia Computing Group, Nanjing University 697 Jan 7, 2023
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 8, 2023
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 385 Jan 6, 2023
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 3, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 5, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022