MetaNLI
Meta learning algorithms to train cross-lingual NLI (multi-task) models
Train (source task)
Reptile
To train the model using Reptile algorithm, run the command below:
python reptile.py \
--meta_tasks sc_en,sc_de,sc_es,sc_fr \
--queue_len 4 \
--temp 5.0 \
--epochs 1 \
--meta_lr 1e-5 \
--scheduler \
--gamma 0.5 \
--step_size 4000 \
--shot 4 \
--meta_iteration 8000 \
--log_interval 300
Prototypical
To train the model using Prototypical Networks algorithm, run the command below:
python prototype.py \
--meta_tasks sc_en,sc_de,sc_es,sc_fr \
--target_task sc_fa \
--epochs 1 \
--meta_lr 1e-5 \
--lambda_1 1 \
--lambda_2 1 \
--scheduler \
--gamma 0.5 \
--step_size 1000 \
--shot 8 \
--query_num 0 \
--target_shot 8 \
--meta_iteration 2500 \
--log_interval 50
Zero-shot Test (on target task)
To perform a zero-shot test of the trained model on the target task, run the command below:
python zeroshot.py \
--load saved/model_sc.pt \
--task sc_fa
Fine-tune (target task)
To fine-tune the trained model on the target task, run the command below:
python finetune.py \
--save saved \
--model_filename fine.pt \
--load saved/model_sc.pt \
--task sc_fa \
--epochs 5 \
--lr 1e-5