Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Overview

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets

This is the official PyTorch implementation for the paper Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR 2021) : https://openreview.net/forum?id=rkQuFUmUOg3.

Abstract

Despite the success of recent Neural Architecture Search (NAS) methods on various tasks which have shown to output networks that largely outperform human-designed networks, conventional NAS methods have mostly tackled the optimization of searching for the network architecture for a single task (dataset), which does not generalize well across multiple tasks (datasets). Moreover, since such task-specific methods search for a neural architecture from scratch for every given task, they incur a large computational cost, which is problematic when the time and monetary budget are limited. In this paper, we propose an efficient NAS framework that is trained once on a database consisting of datasets and pretrained networks and can rapidly search a neural architecture for a novel dataset. The proposed MetaD2A (Meta Dataset-to-Architecture) model can stochastically generate graphs (architectures) from a given set (dataset) via a cross-modal latent space learned with amortized meta-learning. Moreover, we also propose a meta-performance predictor to estimate and select the best architecture without direct training on target datasets. The experimental results demonstrate that our model meta-learned on subsets of ImageNet-1K and architectures from NAS-Bench 201 search space successfully generalizes to multiple benchmark datasets including CIFAR-10 and CIFAR-100, with an average search time of 33 GPU seconds. Even under a large search space, MetaD2A is 5.5K times faster than NSGANetV2, a transferable NAS method, with comparable performance. We believe that the MetaD2A proposes a new research direction for rapid NAS as well as ways to utilize the knowledge from rich databases of datasets and architectures accumulated over the past years.

Framework of MetaD2A Model

Prerequisites

  • Python 3.6 (Anaconda)
  • PyTorch 1.6.0
  • CUDA 10.2
  • python-igraph==0.8.2
  • tqdm==4.50.2
  • torchvision==0.7.0
  • python-igraph==0.8.2
  • nas-bench-201==1.3
  • scipy==1.5.2

If you are not familiar with preparing conda environment, please follow the below instructions

$ conda create --name metad2a python=3.6
$ conda activate metad2a
$ conda install pytorch==1.6.0 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ conda install -c conda-forge tqdm
$ conda install -c conda-forge python-igraph
$ pip install scipy

And for data preprocessing,

$ pip install requests

Hardware Spec used for experiments of the paper

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

NAS-Bench-201

Go to the folder for NAS-Bench-201 experiments (i.e. MetaD2A_nas_bench_201)

$ cd MetaD2A_nas_bench_201

Data Preparation

To download preprocessed data files, run get_files/get_preprocessed_data.py:

$ python get_files/get_preprocessed_data.py

It will take some time to download and preprocess each dataset.

To download MNIST, Pets and Aircraft Datasets, run get_files/get_{DATASET}.py

$ python get_files/get_mnist.py
$ python get_files/get_aircraft.py
$ python get_files/get_pets.py

Other datasets such as Cifar10, Cifar100, SVHN will be automatically downloaded when you load dataloader by torchvision.

If you want to use your own dataset, please first make your own preprocessed data, by modifying process_dataset.py .

$ process_dataset.py

MetaD2A Evaluation (Meta-Test)

You can download trained checkpoint files for generator and predictor

$ python get_files/get_checkpoint.py
$ python get_files/get_predictor_checkpoint.py

1. Evaluation on Cifar10 and Cifar100

By set --data-name as the name of dataset (i.e. cifar10, cifar100), you can evaluate the specific dataset only

# Meta-testing for generator 
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 500 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 500 --data-name {DATASET_NAME}

2. Evaluation on Other Datasets

By set --data-name as the name of dataset (i.e. mnist, svhn, aircraft, pets), you can evaluate the specific dataset only

# Meta-testing for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 50 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 50 --data-name {DATASET_NAME}

Meta-Training MetaD2A Model

You can train the generator and predictor as follows

# Meta-training for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 
                 
# Meta-training for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 

Results

The results of training architectures which are searched by meta-trained MetaD2A model for each dataset

Accuracy

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 93.66±0.17 66.64±0.04 99.66±0.04 95.40±0.67 46.08±7.00 25.31±1.38
MetaD2A (Ours) 94.37±0.03 73.51±0.00 99.71±0.08 96.34±0.37 58.43±1.18 41.50±4.39

Search Time (GPU Sec)

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 10395 19951 24857 31124 3524 2844
MetaD2A (Ours) 69 96 7 7 10 8

MobileNetV3 Search Space

Go to the folder for MobileNetV3 Search Space experiments (i.e. MetaD2A_mobilenetV3)

$ cd MetaD2A_mobilenetV3

And follow README.md written for experiments of MobileNetV3 Search Space

Citation

If you found the provided code useful, please cite our work.

@inproceedings{
    lee2021rapid,
    title={Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets},
    author={Hayeon Lee and Eunyoung Hyung and Sung Ju Hwang},
    booktitle={ICLR},
    year={2021}
}

Reference

You might also like...
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Official code for the ICLR 2021 paper Neural ODE Processes
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Comments
  • NAS-Bench-201 graph generation

    NAS-Bench-201 graph generation

    Dear all,

    Thank you for sharing the code of the metaD2A paper. Is it possible to also share the code used to generate the igraphs of NAS-Bench 201? Such that different meta-training datasets can be created.

    opened by RobvanGastel 0
  • Question about the dimension of set encoder

    Question about the dimension of set encoder

    Hi, thanks for sharing the code. It looks good!

    I might miss something, so I am a little confused about the dimension in the set encoder:

    https://github.com/HayeonLee/MetaD2A/blob/6023a5b59e839a9ec39cfa1fbdcae3678ee311fe/MetaD2A_mobilenetV3/generator/generator_model.py#L254

    Take ImageNet32 as an example, for each image, its size is 3x32x32. For each class, the code samples "N=self.num_sample" images.

    Then, why reshape x to be x.view(-1, self.num_sample, 512)).squeeze(1). https://github.com/HayeonLee/MetaD2A/blob/6023a5b59e839a9ec39cfa1fbdcae3678ee311fe/MetaD2A_mobilenetV3/generator/generator_model.py#L256

    What is the meaning of 512? In my review, I think the code reshapes the x to be "num_class, self.num_sample (for each class), features". But I did not know the meaning of 512. Did the code extract the feature for each image (e.g., for each image, 512 is its feature size--> its feature is a 512-d vector)? However, I did not find the code to extract features.

    Could you please help me address this question? Thanks in advance!

    opened by weijiandeng 1
Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
null
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 6, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 2, 2023
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 6, 2023