SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

Overview

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

This repository implements the SAFL in pytorch.

SAFL Overview

Installation

conda env create -f environment.yml
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

Train

bash scripts/stn_att_rec.sh

Test

You can test with .lmdb files by

bash scripts/main_test_all.sh

Or test with single image by

bash scripts/main_test_image.sh

Data preparation

We give an example to construct your own datasets. Details please refer to tools/create_svtp_lmdb.py.

Citation

If you find this project helpful for your research, please cite the following papers:

You might also like...
RealTime Emotion Recognizer for Machine Learning Study Jam's demo
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Implementation of the ๐Ÿ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the ๐Ÿ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(nยฒ) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Owner
null
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

null 17 Nov 24, 2021
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 5, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral)

Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral) This is the official implementation of Focals Conv (CVPR 2022), a new sp

DV Lab 280 Jan 7, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ํฌ๊ฒŒ 6๋‹จ๊ณ„๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. STEP 0: Input Image Predict ํ•  ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. STEP 1: Make Black and White Image STEP 1 ์€ ์ž…๋ ฅ๋ฐ›์€ ์ด๋ฏธ์ง€์˜ ๊ธ€์ž๋ฅผ ํ‘์ƒ‰์œผ๋กœ, ๋ฐฐ๊ฒฝ์„

Juwan HAN 1 Feb 9, 2022