Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Overview

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

In this repo, you will find the instructions on how to request the data set used to perform the experiments of the aforementioned paper. We manually annotated from scratch a subset of 450 images from the UFBA-UESC Dental Images Deep data set, which comprises 1500 panoramic dental radiographs. We consider that this new data set evolves a previously published data set: DNS Panoramic Images. Therefore, we refer to this new data set as the DNS Panoramic Images v2, where DNS stands for Detection, Numbering, and Segmentation. We presented our results at the 17th International Symposium on Medical Information Processing and Analysis (SIPAIM), and our paper was among the finalists of the best paper award. To be notified of code releases, new data sets, and errata, please watch this repo.

Data set statistics

The data set comprises 450 panoramic images, split into six folds, each containing 75 images. The first five folds were used for cross-validation, while the remaining one constituted the test data set. Therefore, we strongly recommend using fold number 6 (fold-06) as the test data set, so your results can be compared to ours. The annotations are in six JSON files (one for each fold) in the COCO format. We cropped all images to the new 1876x1036 dimensions and converted them to PNG image files. The table below summarizes the data used according to image categories. These categories group the images according to the presence of 32 teeth, restoration, and dental appliances, revealing the high variability of the images. Categories 5 and 6 are reserved for patients with dental implants and more than 32 teeth, respectively. Spoiler: Watch this repo for soon to be published updates.

Category 32 Teeth Restoration Appliance Number and Inst. Segm.
1 ✔️ ✔️ ✔️ 24
2 ✔️ ✔️ 66
3 ✔️ ✔️ 14
4 ✔️ 41
5 Implants 36
6 More than 32 teeth 51
7 ✔️ ✔️ 35
8 ✔️ 136
9 ✔️ 13
10 34
Total 450

Citation

If you use this data set, please cite:

L. Pinheiro, B. Silva, B. Sobrinho, F. Lima, P. Cury, L. Oliveira, “Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays,” in Symposium on Medical Information Processing and Analysis (SIPAIM). SPIE, 2021.

@inproceedings{pinheiro2021numbering,
  title={Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays},
  author={Pinheiro, Laís and Silva, Bernardo and Sobrinho, Brenda and Lima, Fernanda and Cury, Patrícia and Oliveira, Luciano.}
  booktitle={Symposium on Medical Information Processing and Analysis (SIPAIM)},
  year={2021},
  organization={SPIE}
}

Previous Works

This data set and its corresponding paper are a continuation of other works of our group. Please, consider reading and citing:

  • B. Silva, L. Pinheiro, L. Oliveira, and M. Pithon, “A study on tooth segmentation and numbering using end-to-end deep neural networks,” in Conference on Graphics, Patterns and Images. IEEE, 2020.
@inproceedings{silva2020study,
  title={A study on tooth segmentation and numbering using end-to-end deep neural networks},
  author={Silva, Bernardo and Pinheiro, Laís and Oliveira, Luciano and Pithon, Matheus}
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  year={2020},
  organization={IEEE}
}
  • G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep instance segmentation of teeth in panoramic X-ray images,” in Conference on Graphics, Patterns and Images. IEEE, 2018.
@inproceedings{jader2018deep,
  title={Deep instance segmentation of teeth in panoramic X-ray images},
  author={Jader, Gil and Fontineli, Jefferson and Ruiz, Marco and Abdalla, Kalyf and Pithon, Matheus and Oliveira, Luciano},
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={400--407},
  year={2018},
  organization={IEEE}
}
  • G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, Patterns and Images. vol. 107, pp. 15-31, 2018.
@article{silva2018automatic,
  title={Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives},
  author={Silva, Gil and Oliveira, Luciano and Pithon, Matheus},
  journal={Expert Systems with Applications},
  volume={107},
  pages={15--31},
  year={2018},
  publisher={Elsevier}
}

Demonstration

Follow the provided jupyter notebook (demo.ipynb) to get a quick sense of the data set. The conversions.py file defines useful functions to visualize the annotations.

Request the Data Set

Copy the text below in a PDF file, fill out the fields in the text header, and sign it at the end. Please send an e-mail to [email protected] to receive a link to download the DNS Panoramic Images v2 data set with the PDF in attachment. The e-mail must be sent from a professor's valid institutional account:

Subject: Request to download the DNS Panoramic Images v2.

"Name: [your first and last name]

Affiliation: [university where you work]

Department: [your department]

Current position: [your job title]

E-mail: [must be the e-mail at the above-mentioned institution]

I have read and agreed to follow the terms and conditions below: The following conditions define the use of the DNS Panoramic Images v2:

This data set is provided "AS IS" without any express or implied warranty. Although every effort has been made to ensure accuracy, IvisionLab does not take any responsibility for errors or omissions;

Without the expressed permission of IvisionLab, any of the following will be considered illegal: redistribution, modification, and commercial usage of this data set in any way or form, either partially or in its entirety;

All images in this data set are only allowed for demonstration in academic publications and presentations;

This data set will only be used for research purposes. I will not make any part of this data set available to a third party. I'll not sell any part of this data set or make any profit from its use.

[your signature]"

P.S. A link to the data set file will be sent as soon as possible.

You might also like...
Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Owner
Intelligent Vision Research Lab
Computer Vision and Image Pattern Recognition repository
Intelligent Vision Research Lab
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

yifan liu 147 Dec 3, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 3, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 1, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

null 290 Dec 25, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 4, 2023