SSrehab
dependencies:
- python 3.8+
- a GNU/Linux with bash v4 or 5.
- python packages in
requirements.txt
- bcftools (only for
prepare_dbSNPs
) - gz-sort (only for
prepare_dbSNPs
)
Installation and basics
- clone this repo
git clone https://github.com/Kukuster/SSrehab.git
- install requirements
pip install -r requirements.txt
- run the eponymous script in the cloned directory using the following syntax:
python3 SSrehab.py <command> [keys]
Use diagnose
to check the validity of entries in the GWAS SS file.
Use fix
to restore missing/invalid data in the GWAS SS file.
Use prepare_dbSNPs
to preprocess a given dbSNP dataset into 2 datasets, which are used in the fix
command.
Use sort
to format the input GWAS SS file and sort either by Chr and BP or by rsID.
To use the fix
command to its fullest, a user needs:
- SNPs datasets in the target build, preprocessed with the
prepare_dbSNPs
command. - chain file, if the GWAS SS file is provided in build different from the target build
Tutorial
1. Download dbSNP dataset
Download dbSNP datasets from NCBI, in the target build, in vcf, vcf.gz, bcf, or bcf.gz format. The latest versions are recommended. dbSNP datasets are used to restore the following data: Chr, BP, rsID, OA, EA, EAF. Although only builds 37 and 38 are explicitly supported, build 36 may work as well.
For example, curently latest datasets for build 38 and build 37 can be downloaded here:
https://ftp.ncbi.nih.gov/snp/latest_release/VCF/
2. Download the chain file
A chain file is necessary to perform liftover. If a GWAS SS file is provided in the target build, then a chain file is not used.
3. Preprocess dbSNPs datasets
bcftools and gz-sort
3.1 Download and installsee instructions on their websites and/or githubs
recommended bcftools version: 1.11
NOTE: after preprocessing of the necessary dbSNPs is finished, these tools are no longer needed
3.2 Run preprocessing
Run prepare_dbSNPs
using the following syntax:
python3 SSrehab.py prepare_dbSNPs --dbsnp DBSNP --OUTPUT OUTPUT --gz-sort GZ_SORT --bcftools BCFTOOLS
[--buffer BUFFER]
where:
DBSNP
is the dbSNP dataset in vcf, vcf.gz, bcf, or bcf.gz format referencing build 38 or 37OUTPUT
is the base name for the two output dbSNPs datasetsGZ_SORT
is a path to the gz-sort executableBCFTOOLS
is a path to the bcftools executableBUFFER
is buffer size for sorting (size of presort), supports k/M/G suffix. Defaults to 1G. Recommended: at least 200M, ideally: 4G or more
Depending on the size of the dataset, specified buffer size, and specs of the machine, preprocessing may take somewhere from 30 minutes to 6 hours.
After preprocessing, steps 4 and 5 may be repeated ad-lib.
4. Create a config file for your GWAS SS file
Config file is used as meta data for GWAS SS file, and contains:
- columns' indices (indices start from 0)
- input build slug (such as "GRCh38", "GRCh37", "hg18", "hg19")
This config file has to have the same file name as the GWAS SS file but with an additional .json
extension.
For example, if your GWAS SS file is named WojcikG_PMID_htn.gz
, and the first 5 lines in the unpacked file are:
Chr Position_hg19 SNP Other-allele Effect-allele Effect-allele-frequency Sample-size Effect-allele-frequency-cases Sample-size-cases Beta SE P-val INFO-score rsid
1 10539 1:10539:C:A C A 0.004378065 49141 0.003603676 27123 -0.1041663 0.1686092 0.5367087 0.46 rs537182016
1 10616 rs376342519:10616:CCGCCGTTGCAAAGGCGCGCCG:C CCGCCGTTGCAAAGGCGCGCCG C 0.9916342 49141 0.9901789 27123 -0.1738814 0.109543 0.1124369 0.604 rs376342519
1 10642 1:10642:G:A G A 0.006042409 49141 0.007277901 27123 0.1794246 0.1482529 0.226179 0.441 rs558604819
1 11008 1:11008:C:G C G 0.1054568 49141 0.1042446 27123 -0.007140072 0.03613677 0.84337 0.5 rs575272151
your config file should have the name WojcikG_PMID_htn.gz.json
and the following contents:
{
"Chr": 0,
"BP": 1,
"rsID": 13,
"OA": 3,
"EA": 4,
"EAF": 5,
"beta": 9,
"SE": 10,
"pval": 11,
"INFO": 12,
"build": "grch37"
}
Notes:
- SSrehab will only consider data from the columns which indices are specified in the config file. If one of the above columns is present in the SS file but wasn't specified in the config file, then SSrehab treats the column as missing.
- In this example, all the 10 columns from the list of supported columns are present. But none of the columns above are mandatory. If certain columns are missing, the
fix
command will attempt to restore them if possible.
fix
command
5. Run the When the config file is created, and dbSNP datasets are preprocessed, the chain file is downloaded if necessary, then the fix
command can use all its features.
Although it is normally a part of the execution of the fix
command, a user may choose to manually run diagnose
beforehand.
If diagnose
is ran without additional arguments, it is "read-only", i.e. doesn't write into the file system.
Run diagnose
as follows:
python3 SSrehab.py diagnose --INPUT INPUT_GWAS_FILE
where INPUT_GWAS_FILE
is the path to the GWAS SS file with the corresponding config file at *.json
as a result, it will generate the main plot: stacked histogram plot, and an additional bar chart plot for each of the bins in the stacked histogram plot.
These plots will pop up in a new matplotlib window.
The stacked histogram maps the number of invalid SNPs against p-value, allowing assessment of the distribution of invalid SNPs by significance. On the histogram, valid SNPs are shown as blue, and SNPs that have issues are shown as red. The height of the red plot over each bin with the red caption represents the proportion of invalid SNPs in the corresponding bin.
A bar chart is generated for each bin of the stacked histogram plot and reports the number of issues that invalidate the SNP entries in a particular bin.
If a Linux system runs without GUI, the report should be saved on the file system. For this, run the command as follows:
python3 SSrehab.py diagnose --INPUT INPUT_GWAS_FILE --REPORT-DIR REPORT_DIR
where REPORT_DIR
is an existing or not existing directory under which the generated report will be contained. When saved onto a disk, the report also includes a small table with exact numbers of invalid fields and other issues in the GWAS SS file.
Finally, a user may want to decide to run the fix
command.
A user should run the fix
command as follows:
python3 SSrehab.py fix --INPUT INPUT_GWAS_FILE --OUTPUT OUTPUT_FILE
[--dbsnp-1 DBSNP1_FILE] [--dbsnp-2 DBSNP2_FILE]
[--chain-file CHAIN_FILE]
[--freq-db FREQ_DATABASE_SLUG]
where:
INPUT_GWAS_FILE
is the input GWAS SS file with the corresponding.json
config file create at step 4OUTPUT_FILE
is the base name for the fixed file(s)DBSNP1_FILE
is a path to the preprocessed dbSNP #1DBSNP2_FILE
is a path to the preprocessed dbSNP #2CHAIN_FILE
is a path to the chain fileFREQ_DATABASE_SLUG
is a population slug from a frequency database in dbSNP
example:
python3 SSrehab.py fix --INPUT "29559693.tsv" --OUTPUT "SSrehab_fixed/29559693" --dbsnp-1 "dbSNP_155_b38.1.tsv.gz" --dbsnp-2 "dbSNP_155_b38.2.tsv.gz" --chain-file "hg19_to_hg38.chain" --freq-db TOPMED
As the normal process of fix
, a report will be generated for the input file, as well as for the file after each step of processing. Depending on the availability of invalid/missing data in the GWAS SS file and the input arguments, a different number of steps may be required for a complete run of the fix
command, with 1 or 2 loops performed on the GWAS SS file. All steps are performed automatically without prompt. The process of fix
ing is represented in logging to the standard output and may take anywhere from 5 minutes to 1.5 hours, depending on the size of the file and the number of steps.
As a result, if 1 loop was required to fix the file, then the resulting file will be available with the suffix .SSrehabed.tsv
. If 2 loops were required, then the resulting file is available with the suffix .SSrehabed-twice.tsv
.
The report made with a diagnose
command will be available in a separate directory for:
- the input file
- for the file after 1 loop of fixing
- for the file after 2 loops of fixing (applicable only if 2 loops were required)
Manual
Please refer to the instructions by running
python3 SSrehab.py -h
or
python3 SSrehab.py <command> -h
NOTES
"standard" format
- file is in the tsv format, i.e. tabular tab-separated format (bare, zipped, or gzipped)
- there's a one-line header in the file on the first line. All other lines are the data entries
- the file has precisely columns defined as
STANDARD_COLUMN_ORDER
inlib/standard_column_order.py
.- file has exactly these columns, exactly this number of columns, and no other columns
- columns are in this exact order
- if the original file was missing a column, an empty column should be taking its place (entries are the empty string)
BACKLOG
- upon execution of the
fix
command, a config file has to be generated with all the names of the intermediary files. This will improve refactoring into the actual pipeline. - (maybe) improve restoring alleles by adding checks for an exact match of flipped alleles if other checks didn't help. This requires having all SNPs for a particular ChrBP in the memory and is relevant only for restoring alleles by looping through the file sorted by Chr and BP.
- add the ability to specify additional columns from the GWAS SS file that the user wants to include in the end file. This would be an array of integers in the json config file for the input GWAS SS file.
- improve code in the main file:
SSrehab.py
- improve resolver architecture in
loop_fix.py
: make a separate function loopDB1 and loopDB2 that will loop through enough entries in a DB before every resolver and rewrite a "global" object with properties to be fields from the DB: rsID, Chr, BP, alleles, EAF. So resolvers for rsID and ChrBP will be similar to ones for alleles and EAF. Resolvers for these fields then should operate onfields
and that object with fields from a DB. This way a really strong optimization, flexibility, and modularity of resolvers will be achieved.run_all
doesn't have to have resolvers and resolvers_args object to be passed, it can just use the global ones. - improve the interface for liftover. SSrehab fix should work for all sorts of liftovers between builds 36, 37, and 38, including back liftover. If the user omits the preprocessed dbSNP databases as input but specifies the chain file, it can perform liftover only.
- add support for OR, and, maybe, restoration of OR from beta or vice versa.
- add a keyword argument that will cause SSrehab fix to clean up all intermediate files and leave only the last resulting file after the processing.
- add a keyword argument that specifies a temp directory for intermediate files. GWAS SS files are usually 1-4 Gigs unpacked.
- set alleles column to uppercase during preparation (in
prepare_GWASSS_columns.py
script). - feature: save a human-readable textual report about the overall results of restoration (e.g. "performed a liftover, n rsIDs restored, n Chrs lost, ...")
- add a WARNING that beta will be restored with an accurate sign only when the standard error is signed.
- at the moment of 2021.11.14, the following executables are assumed to be available in PATH:
bash
,cut
,paste
,sort
,awk
,gzip
,gunzip
,head
,tail
,rm
,wc
. Need to test SSrehab with a different versions ofbash
,awk
(includinggawk
,nawk
,mawk
. E.g. even thoughgawk
is default for GNU/Linux, Ubuntu hasmawk
by default). - make SSrehab installable via
pip