Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)
Yoonhyung Lee, Joongbo Shin, Kyomin Jung
Abstract: Although early text-to-speech (TTS) models such as Tacotron 2 have succeeded in generating human-like speech, their autoregressive architectures have several limitations: (1) They require a lot of time to generate a mel-spectrogram consisting of hundreds of steps. (2) The autoregressive speech generation shows a lack of robustness due to its error propagation property. In this paper, we propose a novel non-autoregressive TTS model called BVAE-TTS, which eliminates the architectural limitations and generates a mel-spectrogram in parallel. BVAE-TTS adopts a bidirectional-inference variational autoencoder (BVAE) that learns hierarchical latent representations using both bottom-up and top-down paths to increase its expressiveness. To apply BVAE to TTS, we design our model to utilize text information via an attention mechanism. By using attention maps that BVAE-TTS generates, we train a duration predictor so that the model uses the predicted duration of each phoneme at inference. In experiments conducted on LJSpeech dataset, we show that our model generates a mel-spectrogram 27 times faster than Tacotron 2 with similar speech quality. Furthermore, our BVAE-TTS outperforms Glow-TTS, which is one of the state-of-the-art non-autoregressive TTS models, in terms of both speech quality and inference speed while having 58% fewer parameters. One-sentence Summary: In this paper, a novel non-autoregressive text-to-speech model based on bidirectional-inference variational autoencoder called BVAE-TTS is proposed.
Training
- Download and extract the LJ Speech dataset
- Make
preprocessed
folder in the LJSpeech directory and do preprocessing of the data usingprepare_data.ipynb
- Set the
data_path
inhparams.py
to thepreprocessed
folder - Train your own BVAE-TTS model
python train.py --gpu=0 --logdir=baseline
Pre-trained models
We provide a pre-trained BVAE-TTS model, which is a model that you would obtain with the current setting (e.g. hyperparameters, dataset split). Also, we provide a pre-trained WaveGlow model that is used to obtain the audio samples. After downloading the models, you can generate audio samples using inference.ipynb
.
Audio Samples
You can hear the audio samples here
Reference
1.NVIDIA/tacotron2: https://github.com/NVIDIA/tacotron2
2.NVIDIA/waveglow: https://github.com/NVIDIA/waveglow
3.pclucas/iaf-vae: https://github.com/pclucas14/iaf-vae