Stock-history-display - something like a easy yearly review for your stock performance

Overview

Stock History Display

Available on Heroku: https://stock-history-display.herokuapp.com/

The purpose

The purpose of this project is something an easy yearly review tool for your stock performance. This app will help you get a very quick and clear view of your past invesment, about whether you earn or loss, about how much you earn and loss, about when you buy-in and sell-out, about the volume in related buy/sell threade. We both know it's pretty annoying to review your Robinhood history long list and it's not clear at all.

By the help of this app, users will be able to have a better view from their past investment, and also get some feedback from it. This is super important in improving future stock market performance.

Sample result

System Structure

Steps

  • Step 1: Input stock abbreviation: By default, it is TSLA, which is the abbreviation of TESLA
  • Step 2: Copy and paste buy/sell histories from Robinhood history page, make sure you follow the format,
  • Step 3: (Optional) Choose a period: 1 year or 5 year. Also, you can choose a filter which could filter out small profit line to reduce distraction, default = 10.
  • Step 4: Click submit, then you should see buy/sell history picture attached to your stock line chart as below

Current Feature

  • Tech Stacks: Python, Flask, Html, JSON, Docker, Heroku
  • fetch Stock data from Yahoo Finance API
  • persist Stock data as file to reduce duplicated Yahoo Finance API request
  • parse history data: the personal operations history, like when you make a buy-in or sell-out transaction, this will add a datapoint into history. This app support parse data from history following Robinhood history page format. You may paste history from Robinhood history page.
  • bypass browser cache by random number naming
  • support parsing complicated transactions and generating simple buy or sell threads.
  • clear green and red view for earn and loss. 4K very high definition picture.

TODO

  • could not parse "split" in history
  • some bugs when parsing Nvidia data
  • try to improve definition to 4k
  • add this one to google sheet auto request
  • beautify the code
  • add title, introduction and github links into web app Metrics:
  • display total profit from the stock
  • display total transactions in this stock
  • max, avg, min hold days
  • max, avg, min profit statistics regarding the thread transactions

Future

  • Redis Cache
  • MySQL storage
  • support personal accounts, and support google login in
  • better de-deplicate mechanism, potentially using hash, SHA256
  • scale by different time length, year, month, day, etc
  • a better system design
  • beautify UI by Bootstrap

Reference

You might also like...
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Predict multi paths to a moving person depending on his trajectory history.
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Display, filter and search log messages in your terminal
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Owner
LiaoJJ
Actively seeking for a Software Engineer New Grad opportunities
LiaoJJ
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 3, 2023
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python >= 3.7.4 Pytorch >= 1.6.1 Torchvision >= 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 3, 2023
Alex Pashevich 62 Dec 24, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

null 1 Oct 30, 2021
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 9, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021