Objective of the repository is to learn and build machine learning models using Pytorch.
List of Algorithms Covered
π
Day 1 - Linear Regression
π
Day 2 - Logistic Regression
π
Day 3 - Decision Tree
π
Day 4 - KMeans Clustering
π
Day 5 - Naive Bayes
π
Day 6 - K Nearest Neighbour (KNN)
π
Day 7 - Support Vector Machine
π
Day 8 - Tf-Idf Model
π
Day 9 - Principal Components Analysis
π
Day 10 - Lasso and Ridge Regression
π
Day 11 - Gaussian Mixture Model
π
Day 12 - Linear Discriminant Analysis
π
Day 13 - Adaboost Algorithm
π
Day 14 - DBScan Clustering
π
Day 15 - Multi-Class LDA
π
Day 16 - Bayesian Regression
π
Day 17 - K-Medoids
π
Day 18 - TSNE
π
Day 19 - ElasticNet Regression
π
Day 20 - Spectral Clustering
π
Day 21 - Latent Dirichlet
π
Day 22 - Affinity Propagation
π
Day 23 - Gradient Descent Algorithm
π
Day 24 - Regularization Techniques
π
Day 25 - RANSAC Algorithm
π
Day 26 - Normalizations
π
Day 27 - Multi-Layer Perceptron
π
Day 28 - Activations
Let me know if there is any correction. Feedback is welcomed.