Hi,
Thanks for releasing the code. I tried to reproduce the ucf101 fine-tuning results on your GDT_kinetics pretrained model. However, the results seem quite far away. I didn't change any hyperparameters while finetuning. Here is my command
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval_video.py --dataset ucf101 --fold 1 --weights-path ./pretrained/gdt_K400.pth --model av_gdt --root_dir /local-ssd/fmthoker/ucf101/video/ --ucf101-annotation-path /localssd/fmthoker/ucf101/ucfTrainTestlist/
Logs
Evaluating on folds: [1]
INFO - 08/24/21 15:46:23 - 0:00:00 - ============ Initialized logger ============
INFO - 08/24/21 15:46:23 - 0:00:00 - agg_model: False
aud_base_arch: resnet9
aud_sample_rate: 24000
aud_spec_type: 2
audio_augtype: none
base_lr: 0.00025
batch_size: 32
ckpt_epoch: 0
clip_len: 32
colorjitter: True
cross_modal_alpha: 0.5
cross_modal_nce: True
dataset: ucf101
dp: 0.0
dump_checkpoints: ./checkpoints
dump_path: .
epochs: 12
feature_extract: False
fm_crop: False
fold: 1
head_lr: 0.0025
headcount: 1
hmdb51_annotation_path: /datasets01/hmdb51/112018/splits/
lr_gamma: 0.05
lr_milestones: 6,10
lr_warmup_epochs: 2
mlptype: 0
model: av_gdt
momentum: 0.9
multi_crop: False
num_data_samples: None
num_frames: 32
num_head: 4
num_large_crops: 1
num_layer: 2
num_sec: 2
num_sec_aud: 1
num_small_crops: 0
num_spatial_crops: 3
optim_name: sgd
output_dir: .
positional_emb: False
pretrained: False
print_freq: 10
qkv_mha: False
rank: 0
resume:
root_dir: /local-ssd/fmthoker/ucf101/video/
sample_rate: 1
start_epoch: 0
steps_bet_clips: 1
supervised: False
target_fps: 30
test_crop_size: 128
test_only: False
test_time_cj: False
train_clips_per_video: 10
train_crop_size: 128
transformer_time_dim: 8
tsf_lr: 0.00025
ucf101_annotation_path: /local-ssd/fmthoker/ucf101/ucfTrainTestlist/
use_audio_temp_jittering: False
use_bn: False
use_dropout: False
use_gaussian: False
use_grayscale: False
use_l2_norm: False
use_larger_last: False
use_mlp: False
use_random_resize_crop: True
use_scheduler: True
use_volume_jittering: True
val_clips_per_video: 10
vid_base_arch: r2plus1d_18
wd_base: 0.005
wd_tsf: 0.005
weight_decay: 0.005
weights_path: ./pretrained/gdt_K400.pth
workers: 16
z_normalize: False
INFO - 08/24/21 15:46:23 - 0:00:00 - Loading model
Using Audio-Visual GDT
Using GDT model
{'block': <class 'src.vmz.BasicBlock'>, 'conv_makers': [<class 'src.vmz.Conv2Plus1D'>, <class 'src.vmz.Conv2Plus1D'>, <class 'src.vmz.Conv2Plus1D'>, <class 'src.vmz.Conv2Plus1D'>], 'layers': [2, 2, 2, 2],
'stem': <class 'src.vmz.R2Plus1dStem'>, 'larger_last': False}
Randomy initializing models
resnet9, duration: 1
Using Linear Layer
INFO - 08/24/21 15:46:23 - 0:00:01 - Loading model weights
INFO - 08/24/21 15:46:27 - 0:00:04 - Epoch checkpoint: 101
didnt load mlp_v.block_forward.2.weight
didnt load mlp_v.block_forward.4.weight
didnt load mlp_v.block_forward.4.bias
didnt load mlp_v.block_forward.4.running_mean
didnt load mlp_v.block_forward.4.running_var
didnt load mlp_v.block_forward.4.num_batches_tracked
didnt load mlp_v.block_forward.8.weight
didnt load mlp_v.block_forward.8.bias
didnt load mlp_a.block_forward.2.weight
didnt load mlp_a.block_forward.4.weight
didnt load mlp_a.block_forward.4.bias
didnt load mlp_a.block_forward.4.running_mean
didnt load mlp_a.block_forward.4.running_var
didnt load mlp_a.block_forward.4.num_batches_tracked
didnt load mlp_a.block_forward.8.weight
didnt load mlp_a.block_forward.8.bias
INFO - 08/24/21 15:46:27 - 0:00:04 - Loading model done
Using non-agg GDT model
Classifier to 101 classes;
INFO - 08/24/21 15:46:27 - 0:00:04 - Getting params for finetuning
INFO - 08/24/21 15:46:27 - 0:00:04 - ('weight', torch.Size([101, 512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('bias', torch.Size([101]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.0.weight', torch.Size([45, 3, 1, 7, 7]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.1.weight', torch.Size([45]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.1.bias', torch.Size([45]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.3.weight', torch.Size([64, 45, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.4.weight', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('stem.4.bias', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.0.0.weight', torch.Size([144, 64, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.0.1.weight', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.0.1.bias', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.0.3.weight', torch.Size([64, 144, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.1.weight', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv1.1.bias', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.0.0.weight', torch.Size([144, 64, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.0.1.weight', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.0.1.bias', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.0.3.weight', torch.Size([64, 144, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.1.weight', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.0.conv2.1.bias', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.0.0.weight', torch.Size([144, 64, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.0.1.weight', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.0.1.bias', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.0.3.weight', torch.Size([64, 144, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.1.weight', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv1.1.bias', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.0.0.weight', torch.Size([144, 64, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.0.1.weight', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.0.1.bias', torch.Size([144]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.0.3.weight', torch.Size([64, 144, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.1.weight', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer1.1.conv2.1.bias', torch.Size([64]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.0.0.weight', torch.Size([230, 64, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.0.1.weight', torch.Size([230]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.0.1.bias', torch.Size([230]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.0.3.weight', torch.Size([128, 230, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.1.weight', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv1.1.bias', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.0.0.weight', torch.Size([230, 128, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.0.1.weight', torch.Size([230]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.0.1.bias', torch.Size([230]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.0.3.weight', torch.Size([128, 230, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.1.weight', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.conv2.1.bias', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.downsample.0.weight', torch.Size([128, 64, 1, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.downsample.1.weight', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.0.downsample.1.bias', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.0.0.weight', torch.Size([288, 128, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.0.1.weight', torch.Size([288]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.0.1.bias', torch.Size([288]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.0.3.weight', torch.Size([128, 288, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.1.weight', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv1.1.bias', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.0.0.weight', torch.Size([288, 128, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.0.1.weight', torch.Size([288]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.0.1.bias', torch.Size([288]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.0.3.weight', torch.Size([128, 288, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.1.weight', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer2.1.conv2.1.bias', torch.Size([128]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.0.0.weight', torch.Size([460, 128, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.0.1.weight', torch.Size([460]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.0.1.bias', torch.Size([460]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.0.3.weight', torch.Size([256, 460, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.1.weight', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv1.1.bias', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.0.0.weight', torch.Size([460, 256, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.0.1.weight', torch.Size([460]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.0.1.bias', torch.Size([460]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.0.3.weight', torch.Size([256, 460, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.1.weight', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.conv2.1.bias', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.downsample.0.weight', torch.Size([256, 128, 1, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.downsample.1.weight', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.0.downsample.1.bias', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.0.0.weight', torch.Size([576, 256, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.0.1.weight', torch.Size([576]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.0.1.bias', torch.Size([576]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.0.3.weight', torch.Size([256, 576, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.1.weight', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv1.1.bias', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.0.0.weight', torch.Size([576, 256, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.0.1.weight', torch.Size([576]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.0.1.bias', torch.Size([576]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.0.3.weight', torch.Size([256, 576, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.1.weight', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer3.1.conv2.1.bias', torch.Size([256]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.0.0.weight', torch.Size([921, 256, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.0.1.weight', torch.Size([921]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.0.1.bias', torch.Size([921]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.0.3.weight', torch.Size([512, 921, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.1.weight', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv1.1.bias', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.0.0.weight', torch.Size([921, 512, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.0.1.weight', torch.Size([921]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.0.1.bias', torch.Size([921]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.0.3.weight', torch.Size([512, 921, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.1.weight', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.conv2.1.bias', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.downsample.0.weight', torch.Size([512, 256, 1, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.downsample.1.weight', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.0.downsample.1.bias', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.0.0.weight', torch.Size([1152, 512, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.0.1.weight', torch.Size([1152]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.0.1.bias', torch.Size([1152]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.0.3.weight', torch.Size([512, 1152, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.1.weight', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv1.1.bias', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.0.0.weight', torch.Size([1152, 512, 1, 3, 3]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.0.1.weight', torch.Size([1152]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.0.1.bias', torch.Size([1152]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.0.3.weight', torch.Size([512, 1152, 3, 1, 1]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.1.weight', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 - ('layer4.1.conv2.1.bias', torch.Size([512]))
INFO - 08/24/21 15:46:27 - 0:00:04 -
===========Check Grad============
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.4.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.stem.4.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.0.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer1.1.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.downsample.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.downsample.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.0.downsample.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer2.1.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.downsample.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.downsample.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.0.downsample.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer3.1.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.downsample.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.downsample.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.0.downsample.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv1.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.0.0.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.0.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.0.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.0.3.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.1.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('base.layer4.1.conv2.1.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('classifier.weight', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - ('classifier.bias', True)
INFO - 08/24/21 15:46:27 - 0:00:04 - =================================
INFO - 08/24/21 15:46:27 - 0:00:04 - Creating AV Datasets
Constructing ucf101 train...
/local-ssd/fmthoker/ucf101/video/ datasets/data/ucf101_train.txt
['/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c02.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeM
akeup/v_ApplyEyeMakeup_g01_c03.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c04.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c05.avi', '/local
-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c06.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c01.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_
ApplyEyeMakeup_g02_c02.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c03.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c04.avi']
Constructing ucf101 dataloader (size: 13320) from datasets/data/ucf101_train.txt
/local-ssd/fmthoker/ucf101/ucfTrainTestlist/trainlist01.txt
Total number of videos: 13320, Valid videos: 9537
Constructing ucf101 test...
/local-ssd/fmthoker/ucf101/video/ datasets/data/ucf101_test.txt
['/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c02.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeM
akeup/v_ApplyEyeMakeup_g01_c03.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c04.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c05.avi', '/local
-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c06.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c01.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_
ApplyEyeMakeup_g02_c02.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c03.avi', '/local-ssd/fmthoker/ucf101/video/ApplyEyeMakeup/v_ApplyEyeMakeup_g02_c04.avi']
Constructing ucf101 dataloader (size: 399600) from datasets/data/ucf101_test.txt
/local-ssd/fmthoker/ucf101/ucfTrainTestlist/testlist01.txt
Total number of videos: 399600, Valid videos: 113490
INFO - 08/24/21 15:46:28 - 0:00:06 - Creating data loaders
INFO - 08/24/21 15:46:28 - 0:00:06 - Using SGD with lr: 0.0025, wd: 0.005
INFO - 08/24/21 15:46:28 - 0:00:06 - Num. of Epochs: 12, Milestones: [4, 8]
INFO - 08/24/21 15:46:28 - 0:00:06 - Using scheduler with 2 warmup epochs
INFO - 08/24/21 15:46:28 - 0:00:06 - Start training epoch: 0
INFO - 08/24/21 15:47:20 - 0:00:57 - Epoch[0] - Iter: [0/298] Time 51.689 (51.689) Data 1622540465.039 (1622540465.039) Loss 4.6286 (4.6286) Prec 3.125 (3.125) LR 0.0025
INFO - 08/24/21 15:49:26 - 0:03:03 - Epoch[0] - Iter: [50/298] Time 2.506 (3.487) Data 1622540435.687 (1622540436.263) Loss 4.5635 (4.6110) Prec 0.000 (1.164) LR 0.0025
INFO - 08/24/21 15:51:31 - 0:05:08 - Epoch[0] - Iter: [100/298] Time 2.493 (2.998) Data 1622540435.687 (1622540435.978) Loss 4.6392 (4.6082) Prec 0.000 (1.145) LR 0.0025
INFO - 08/24/21 15:53:36 - 0:07:13 - Epoch[0] - Iter: [150/298] Time 2.481 (2.832) Data 1622540435.687 (1622540435.882) Loss 4.5959 (4.6050) Prec 0.000 (1.407) LR 0.0025
INFO - 08/24/21 15:55:41 - 0:09:18 - Epoch[0] - Iter: [200/298] Time 2.482 (2.748) Data 1622540435.687 (1622540435.833) Loss 4.5906 (4.6011) Prec 0.000 (1.632) LR 0.0025
INFO - 08/24/21 15:57:45 - 0:11:23 - Epoch[0] - Iter: [250/298] Time 2.542 (2.698) Data 1622540435.687 (1622540435.804) Loss 4.6088 (4.5984) Prec 3.125 (1.755) LR 0.0025
INFO - 08/24/21 15:59:43 - 0:13:20 - Start evaluating epoch: 0
INFO - 08/24/21 15:59:43 - 0:13:20 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 15:59:45 - 0:13:22 - Start training epoch: 1
INFO - 08/24/21 16:00:10 - 0:13:47 - Epoch[1] - Iter: [0/298] Time 25.480 (25.480) Data 1622540458.407 (1622540458.407) Loss 4.5279 (4.5279) Prec 9.375 (9.375) LR 0.01125
INFO - 08/24/21 16:02:16 - 0:15:53 - Epoch[1] - Iter: [50/298] Time 2.515 (2.965) Data 1622540435.688 (1622540436.133) Loss 4.5346 (4.5540) Prec 12.500 (3.799) LR 0.01125
INFO - 08/24/21 16:04:21 - 0:17:58 - Epoch[1] - Iter: [100/298] Time 2.510 (2.735) Data 1622540435.688 (1622540435.912) Loss 4.5357 (4.5358) Prec 6.250 (5.972) LR 0.01125
INFO - 08/24/21 16:06:26 - 0:20:03 - Epoch[1] - Iter: [150/298] Time 2.532 (2.659) Data 1622540435.687 (1622540435.838) Loss 4.4710 (4.5186) Prec 15.625 (7.554) LR 0.01125
INFO - 08/24/21 16:08:31 - 0:22:09 - Epoch[1] - Iter: [200/298] Time 2.522 (2.621) Data 1622540435.687 (1622540435.801) Loss 4.3993 (4.5033) Prec 31.250 (8.893) LR 0.01125
INFO - 08/24/21 16:10:37 - 0:24:14 - Epoch[1] - Iter: [250/298] Time 2.525 (2.597) Data 1622540435.688 (1622540435.778) Loss 4.4011 (4.4881) Prec 6.250 (9.587) LR 0.01125
INFO - 08/24/21 16:12:34 - 0:26:11 - Start evaluating epoch: 1
INFO - 08/24/21 16:12:34 - 0:26:11 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 16:12:36 - 0:26:13 - Start training epoch: 2
INFO - 08/24/21 16:13:06 - 0:26:43 - Epoch[2] - Iter: [0/298] Time 30.481 (30.481) Data 1622540463.503 (1622540463.503) Loss 4.3571 (4.3571) Prec 9.375 (9.375) LR 0.02
INFO - 08/24/21 16:15:11 - 0:28:49 - Epoch[2] - Iter: [50/298] Time 2.522 (3.056) Data 1622540435.687 (1622540436.233) Loss 4.3466 (4.3461) Prec 12.500 (16.238) LR 0.02
INFO - 08/24/21 16:17:17 - 0:30:54 - Epoch[2] - Iter: [100/298] Time 2.501 (2.784) Data 1622540435.687 (1622540435.963) Loss 4.2123 (4.3223) Prec 25.000 (16.677) LR 0.02
INFO - 08/24/21 16:19:22 - 0:33:00 - Epoch[2] - Iter: [150/298] Time 2.521 (2.693) Data 1622540435.688 (1622540435.872) Loss 4.1464 (4.2927) Prec 21.875 (17.632) LR 0.02
INFO - 08/24/21 16:21:28 - 0:35:05 - Epoch[2] - Iter: [200/298] Time 2.502 (2.647) Data 1622540435.687 (1622540435.826) Loss 4.1699 (4.2582) Prec 21.875 (18.968) LR 0.02
INFO - 08/24/21 16:23:33 - 0:37:10 - Epoch[2] - Iter: [250/298] Time 2.498 (2.618) Data 1622540435.688 (1622540435.798) Loss 3.9341 (4.2171) Prec 31.250 (20.319) LR 0.02
INFO - 08/24/21 16:25:30 - 0:39:07 - Start evaluating epoch: 2
INFO - 08/24/21 16:25:30 - 0:39:07 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 16:25:31 - 0:39:09 - Start training epoch: 3
INFO - 08/24/21 16:26:01 - 0:39:39 - Epoch[3] - Iter: [0/298] Time 29.839 (29.839) Data 1622540462.845 (1622540462.845) Loss 3.8673 (3.8673) Prec 34.375 (34.375) LR 0.02
INFO - 08/24/21 16:28:07 - 0:41:44 - Epoch[3] - Iter: [50/298] Time 2.520 (3.049) Data 1622540435.688 (1622540436.220) Loss 4.0330 (3.9060) Prec 21.875 (26.042) LR 0.02
INFO - 08/24/21 16:30:12 - 0:43:49 - Epoch[3] - Iter: [100/298] Time 2.488 (2.780) Data 1622540435.687 (1622540435.956) Loss 3.8576 (3.8755) Prec 15.625 (26.300) LR 0.02
INFO - 08/24/21 16:32:17 - 0:45:55 - Epoch[3] - Iter: [150/298] Time 2.495 (2.689) Data 1622540435.687 (1622540435.867) Loss 3.6733 (3.8285) Prec 37.500 (27.918) LR 0.02
INFO - 08/24/21 16:34:23 - 0:48:00 - Epoch[3] - Iter: [200/298] Time 2.535 (2.643) Data 1622540435.688 (1622540435.823) Loss 3.4600 (3.7857) Prec 34.375 (28.296) LR 0.02
INFO - 08/24/21 16:36:28 - 0:50:06 - Epoch[3] - Iter: [250/298] Time 2.496 (2.617) Data 1622540435.687 (1622540435.796) Loss 3.2958 (3.7393) Prec 34.375 (29.109) LR 0.02
INFO - 08/24/21 16:38:26 - 0:52:03 - Start evaluating epoch: 3
INFO - 08/24/21 16:38:26 - 0:52:03 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 16:38:27 - 0:52:05 - Start training epoch: 4
INFO - 08/24/21 16:38:43 - 0:52:20 - Epoch[4] - Iter: [0/298] Time 15.868 (15.868) Data 1622540448.829 (1622540448.829) Loss 3.5739 (3.5739) Prec 31.250 (31.250) LR 0.02
INFO - 08/24/21 16:40:55 - 0:54:32 - Epoch[4] - Iter: [50/298] Time 2.526 (2.889) Data 1622540435.688 (1622540436.030) Loss 3.4294 (3.3843) Prec 28.125 (32.353) LR 0.02
INFO - 08/24/21 16:43:00 - 0:56:37 - Epoch[4] - Iter: [100/298] Time 2.492 (2.700) Data 1622540435.687 (1622540435.860) Loss 3.1331 (3.3321) Prec 43.750 (33.694) LR 0.02
INFO - 08/24/21 16:45:05 - 0:58:43 - Epoch[4] - Iter: [150/298] Time 2.508 (2.636) Data 1622540435.688 (1622540435.803) Loss 3.5533 (3.2995) Prec 31.250 (34.085) LR 0.02
INFO - 08/24/21 16:47:10 - 1:00:48 - Epoch[4] - Iter: [200/298] Time 2.507 (2.602) Data 1622540435.687 (1622540435.774) Loss 3.0330 (3.2618) Prec 28.125 (34.686) LR 0.02
INFO - 08/24/21 16:49:16 - 1:02:53 - Epoch[4] - Iter: [250/298] Time 2.555 (2.584) Data 1622540435.688 (1622540435.757) Loss 3.2438 (3.2210) Prec 28.125 (35.545) LR 0.02
INFO - 08/24/21 16:51:14 - 1:04:51 - Start evaluating epoch: 4
INFO - 08/24/21 16:51:14 - 1:04:51 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 16:51:15 - 1:04:52 - Start training epoch: 5
INFO - 08/24/21 16:51:32 - 1:05:09 - Epoch[5] - Iter: [0/298] Time 16.828 (16.828) Data 1622540449.801 (1622540449.801) Loss 2.7837 (2.7837) Prec 46.875 (46.875) LR 0.02
INFO - 08/24/21 16:53:42 - 1:07:19 - Epoch[5] - Iter: [50/298] Time 2.554 (2.875) Data 1622540435.687 (1622540436.010) Loss 2.7985 (2.9303) Prec 46.875 (40.686) LR 0.02
INFO - 08/24/21 16:55:47 - 1:09:24 - Epoch[5] - Iter: [100/298] Time 2.498 (2.695) Data 1622540435.688 (1622540435.851) Loss 2.9752 (2.8821) Prec 31.250 (41.770) LR 0.02
INFO - 08/24/21 16:57:53 - 1:11:30 - Epoch[5] - Iter: [150/298] Time 2.511 (2.633) Data 1622540435.687 (1622540435.797) Loss 2.9061 (2.8535) Prec 34.375 (41.846) LR 0.02
INFO - 08/24/21 16:59:58 - 1:13:35 - Epoch[5] - Iter: [200/298] Time 2.488 (2.602) Data 1622540435.687 (1622540435.769) Loss 2.8021 (2.8290) Prec 40.625 (41.962) LR 0.02
INFO - 08/24/21 17:02:03 - 1:15:40 - Epoch[5] - Iter: [250/298] Time 2.508 (2.582) Data 1622540435.687 (1622540435.753) Loss 2.8373 (2.8024) Prec 43.750 (42.418) LR 0.02
INFO - 08/24/21 17:04:01 - 1:17:38 - Start evaluating epoch: 5
INFO - 08/24/21 17:04:01 - 1:17:38 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 17:04:02 - 1:17:39 - Start training epoch: 6
INFO - 08/24/21 17:04:31 - 1:18:08 - Epoch[6] - Iter: [0/298] Time 29.058 (29.058) Data 1622540462.031 (1622540462.031) Loss 2.4810 (2.4810) Prec 50.000 (50.000) LR 0.02
INFO - 08/24/21 17:06:37 - 1:20:14 - Epoch[6] - Iter: [50/298] Time 2.504 (3.039) Data 1622540435.687 (1622540436.204) Loss 2.4081 (2.5313) Prec 59.375 (49.142) LR 0.02
INFO - 08/24/21 17:08:43 - 1:22:20 - Epoch[6] - Iter: [100/298] Time 2.572 (2.777) Data 1622540435.687 (1622540435.948) Loss 2.4269 (2.5146) Prec 50.000 (49.196) LR 0.02
INFO - 08/24/21 17:10:48 - 1:24:26 - Epoch[6] - Iter: [150/298] Time 2.486 (2.690) Data 1622540435.687 (1622540435.862) Loss 2.1894 (2.4784) Prec 56.250 (49.400) LR 0.02
INFO - 08/24/21 17:12:54 - 1:26:32 - Epoch[6] - Iter: [200/298] Time 2.515 (2.647) Data 1622540435.687 (1622540435.819) Loss 2.4088 (2.4631) Prec 40.625 (49.114) LR 0.02
INFO - 08/24/21 17:15:00 - 1:28:37 - Epoch[6] - Iter: [250/298] Time 2.673 (2.620) Data 1622540435.688 (1622540435.792) Loss 2.2423 (2.4371) Prec 46.875 (49.589) LR 0.02
INFO - 08/24/21 17:16:57 - 1:30:35 - Start evaluating epoch: 6
INFO - 08/24/21 17:16:57 - 1:30:35 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 17:16:59 - 1:30:36 - Start training epoch: 7
INFO - 08/24/21 17:17:21 - 1:30:58 - Epoch[7] - Iter: [0/298] Time 22.183 (22.183) Data 1622540455.122 (1622540455.122) Loss 2.2278 (2.2278) Prec 50.000 (50.000) LR 0.001
INFO - 08/24/21 17:19:28 - 1:33:05 - Epoch[7] - Iter: [50/298] Time 2.526 (2.930) Data 1622540435.687 (1622540436.068) Loss 1.8457 (2.2670) Prec 75.000 (52.696) LR 0.001
INFO - 08/24/21 17:21:34 - 1:35:11 - Epoch[7] - Iter: [100/298] Time 2.531 (2.723) Data 1622540435.688 (1622540435.880) Loss 2.3264 (2.2734) Prec 56.250 (52.259) LR 0.001
INFO - 08/24/21 17:23:39 - 1:37:16 - Epoch[7] - Iter: [150/298] Time 2.518 (2.652) Data 1622540435.688 (1622540435.816) Loss 2.4978 (2.2473) Prec 50.000 (52.918) LR 0.001
INFO - 08/24/21 17:25:44 - 1:39:21 - Epoch[7] - Iter: [200/298] Time 2.524 (2.614) Data 1622540435.687 (1622540435.784) Loss 2.1839 (2.2458) Prec 37.500 (53.420) LR 0.001
INFO - 08/24/21 17:27:49 - 1:41:27 - Epoch[7] - Iter: [250/298] Time 2.501 (2.593) Data 1622540435.687 (1622540435.765) Loss 2.2702 (2.2481) Prec 43.750 (53.536) LR 0.001
INFO - 08/24/21 17:29:47 - 1:43:24 - Start evaluating epoch: 7
INFO - 08/24/21 18:25:12 - 2:38:49 - Test: Time 0.937 Loss 1.6872 ClipAcc@1 58.206 VidAcc@1 63.283
INFO - 08/24/21 18:25:12 - 2:38:49 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 18:25:13 - 2:38:50 - Start training epoch: 8
INFO - 08/24/21 18:25:34 - 2:39:11 - Epoch[8] - Iter: [0/298] Time 20.517 (20.517) Data 1622540451.545 (1622540451.545) Loss 2.4127 (2.4127) Prec 40.625 (40.625) LR 0.001
INFO - 08/24/21 18:27:38 - 2:41:16 - Epoch[8] - Iter: [50/298] Time 2.465 (2.850) Data 1622540435.687 (1622540435.998) Loss 2.1980 (2.2194) Prec 56.250 (57.782) LR 0.001
INFO - 08/24/21 18:29:42 - 2:43:20 - Epoch[8] - Iter: [100/298] Time 2.468 (2.665) Data 1622540435.687 (1622540435.844) Loss 2.4523 (2.2355) Prec 65.625 (56.528) LR 0.001
INFO - 08/24/21 18:31:47 - 2:45:24 - Epoch[8] - Iter: [150/298] Time 2.509 (2.606) Data 1622540435.688 (1622540435.792) Loss 1.9243 (2.2228) Prec 68.750 (55.877) LR 0.001
INFO - 08/24/21 18:33:51 - 2:47:28 - Epoch[8] - Iter: [200/298] Time 2.477 (2.576) Data 1622540435.687 (1622540435.766) Loss 2.2771 (2.2333) Prec 56.250 (55.084) LR 0.001
INFO - 08/24/21 18:35:55 - 2:49:33 - Epoch[8] - Iter: [250/298] Time 2.485 (2.558) Data 1622540435.687 (1622540435.751) Loss 2.2006 (2.2320) Prec 46.875 (54.918) LR 0.001
INFO - 08/24/21 18:37:52 - 2:51:29 - Start evaluating epoch: 8
INFO - 08/24/21 19:31:41 - 3:45:19 - Test: Time 0.910 Loss 1.6609 ClipAcc@1 58.079 VidAcc@1 63.574
INFO - 08/24/21 19:31:42 - 3:45:19 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 19:31:43 - 3:45:20 - Start training epoch: 9
INFO - 08/24/21 19:32:02 - 3:45:39 - Epoch[9] - Iter: [0/298] Time 19.203 (19.203) Data 1622540452.256 (1622540452.256) Loss 2.4376 (2.4376) Prec 34.375 (34.375) LR 0.001
INFO - 08/24/21 19:34:07 - 3:47:44 - Epoch[9] - Iter: [50/298] Time 2.502 (2.829) Data 1622540435.687 (1622540436.012) Loss 2.1187 (2.2550) Prec 56.250 (54.289) LR 0.001
INFO - 08/24/21 19:36:11 - 3:49:49 - Epoch[9] - Iter: [100/298] Time 2.496 (2.660) Data 1622540435.687 (1622540435.851) Loss 2.2576 (2.2123) Prec 59.375 (55.600) LR 0.001
INFO - 08/24/21 19:38:16 - 3:51:53 - Epoch[9] - Iter: [150/298] Time 2.525 (2.605) Data 1622540435.687 (1622540435.797) Loss 2.2289 (2.2205) Prec 56.250 (54.843) LR 0.001
INFO - 08/24/21 19:40:20 - 3:53:58 - Epoch[9] - Iter: [200/298] Time 2.480 (2.575) Data 1622540435.687 (1622540435.770) Loss 2.1648 (2.2221) Prec 46.875 (54.773) LR 0.001
INFO - 08/24/21 19:42:25 - 3:56:02 - Epoch[9] - Iter: [250/298] Time 2.496 (2.558) Data 1622540435.687 (1622540435.753) Loss 2.1566 (2.2231) Prec 59.375 (54.905) LR 0.001
INFO - 08/24/21 19:44:22 - 3:57:59 - Start evaluating epoch: 9
INFO - 08/24/21 20:38:41 - 4:52:18 - Test: Time 0.919 Loss 1.6590 ClipAcc@1 58.412 VidAcc@1 62.781
INFO - 08/24/21 20:38:41 - 4:52:18 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 20:38:42 - 4:52:19 - Start training epoch: 10
INFO - 08/24/21 20:39:00 - 4:52:37 - Epoch[10] - Iter: [0/298] Time 18.026 (18.026) Data 1622540451.023 (1622540451.023) Loss 2.1097 (2.1097) Prec 65.625 (65.625) LR 0.001
INFO - 08/24/21 20:41:08 - 4:54:45 - Epoch[10] - Iter: [50/298] Time 2.502 (2.856) Data 1622540435.687 (1622540436.024) Loss 2.4694 (2.1863) Prec 46.875 (56.924) LR 0.001
INFO - 08/24/21 20:43:12 - 4:56:49 - Epoch[10] - Iter: [100/298] Time 2.467 (2.672) Data 1622540435.687 (1622540435.857) Loss 2.2242 (2.2072) Prec 56.250 (55.600) LR 0.001
INFO - 08/24/21 20:45:16 - 4:58:54 - Epoch[10] - Iter: [150/298] Time 2.476 (2.612) Data 1622540435.687 (1622540435.801) Loss 2.2163 (2.2074) Prec 56.250 (55.277) LR 0.001
INFO - 08/24/21 20:47:21 - 5:00:58 - Epoch[10] - Iter: [200/298] Time 2.467 (2.581) Data 1622540435.687 (1622540435.773) Loss 2.0947 (2.2096) Prec 56.250 (55.317) LR 0.001
INFO - 08/24/21 20:49:25 - 5:03:02 - Epoch[10] - Iter: [250/298] Time 2.480 (2.562) Data 1622540435.687 (1622540435.756) Loss 2.3103 (2.2035) Prec 53.125 (55.640) LR 0.001
INFO - 08/24/21 20:51:22 - 5:04:59 - Start evaluating epoch: 10
INFO - 08/24/21 21:46:14 - 5:59:51 - Test: Time 0.928 Loss 1.6248 ClipAcc@1 59.569 VidAcc@1 65.054
INFO - 08/24/21 21:46:14 - 5:59:51 - Saving checkpoint to: .
Saving checkpoint to: .
INFO - 08/24/21 21:46:16 - 5:59:53 - Start training epoch: 11
INFO - 08/24/21 21:46:37 - 6:00:14 - Epoch[11] - Iter: [0/298] Time 20.990 (20.990) Data 1622540454.127 (1622540454.127) Loss 2.4158 (2.4158) Prec 46.875 (46.875) LR 5.000000000000001e-05
INFO - 08/24/21 21:48:42 - 6:02:19 - Epoch[11] - Iter: [50/298] Time 2.492 (2.859) Data 1622540435.687 (1622540436.049) Loss 2.0902 (2.2294) Prec 62.500 (53.799) LR 5.000000000000001e-05
INFO - 08/24/21 21:50:45 - 6:04:22 - Epoch[11] - Iter: [100/298] Time 2.476 (2.666) Data 1622540435.687 (1622540435.870) Loss 1.9649 (2.2114) Prec 71.875 (54.920) LR 5.000000000000001e-0
5
INFO - 08/24/21 21:52:49 - 6:06:26 - Epoch[11] - Iter: [150/298] Time 2.461 (2.603) Data 1622540435.687 (1622540435.809) Loss 2.1620 (2.1977) Prec 53.125 (55.671) LR 5.000000000000001e-0
5
INFO - 08/24/21 21:54:53 - 6:08:30 - Epoch[11] - Iter: [200/298] Time 2.481 (2.573) Data 1622540435.687 (1622540435.779) Loss 2.1617 (2.1944) Prec 59.375 (55.955) LR 5.000000000000001e-0
5
INFO - 08/24/21 21:56:57 - 6:10:35 - Epoch[11] - Iter: [250/298] Time 2.478 (2.555) Data 1622540435.688 (1622540435.761) Loss 2.1179 (2.1925) Prec 65.625 (56.387) LR 5.000000000000001e-0
5
INFO - 08/24/21 21:58:54 - 6:12:31 - Start evaluating epoch: 11
INFO - 08/24/21 22:50:11 - 7:03:49 - Test: Time 0.867 Loss 1.6048 ClipAcc@1 59.339 VidAcc@1 64.261
INFO - 08/24/21 22:50:11 - 7:03:49 - Saving checkpoint to: .
Saving checkpoint to: .
Checkpoint saved
INFO - 08/24/21 22:50:13 - 7:03:50 - Training time 7:03:44
INFO - 08/24/21 22:50:13 - 7:03:50 - 3-Fold (ucf101): Vid Acc@1 65.054, Video Acc@5 89.902
Can you provide some insights?
I