This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

Related tags

Deep Learning FACT
Overview

FACT

This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

To cite, please use:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Qinwei and Zhang, Ruipeng and Zhang, Ya and Wang, Yanfeng and Tian, Qi},
    title     = {A Fourier-Based Framework for Domain Generalization},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {14383-14392}
}

Requirements

  • Python 3.6
  • Pytorch 1.1.0

Evaluation

Firstly create directory ckpt/ and drag your model under it. For running the evaluation code, please download the PACS dataset from http://www.eecs.qmul.ac.uk/~dl307/project_iccv2017. Then update the files with suffix _test.txt in data/datalists for each domain, following styles below:

/home/user/data/images/PACS/kfold/art_painting/dog/pic_001.jpg 0
/home/user/data/images/PACS/kfold/art_painting/dog/pic_002.jpg 0
/home/user/data/images/PACS/kfold/art_painting/dog/pic_003.jpg 0
...

Once the data is prepared, remember to update the path of test files and output logs in shell_test.py:

input_dir = 'path/to/test/files'
output_dir = 'path/to/output/logs'

then simply run:

 python shell_test.py -d=art_painting

You can use the argument -d to specify the held-out target domain.

Training from scratch

After downloading the dataset, update the files with suffix _train.txt and _val.txt in data/datalists for each domain, following the same styles as the test files above. Please make sure you are using the official train-val-split. Then update the the path of train&val files and output logs in shell_train.py:

input_dir = 'path/to/train/files'
output_dir = 'path/to/output/logs'

Then running the code:

python shell_train.py -d=art_painting

Use the argument -d to specify the held-out target domain.

Acknowledgement

Part of our code is borrowed from the following repositories.

  • JigenDG: "Domain Generalization by Solving Jigsaw Puzzles", CVPR 2019
  • DDAIG: "Deep Domain-Adversarial Image Generation for Domain Generalisation", AAAI 2020

We thank to the authors for releasing their codes. Please also consider citing their works.

You might also like...
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Official code for our CVPR '22 paper
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Comments
  • Code for generating phase-only reconstruction

    Code for generating phase-only reconstruction

    In the paper, you mentioned "we first generate phase-only reconstructed images by setting the amplitude component as a constant.". However, I cannot understand how you set the amplitude component as a constant. Whenever I tried that way, it gives me the black image. Can you provide implementations for generating phase-only recon images?

    opened by wjun0830 2
  • On the model selection

    On the model selection

    In your paper, you write: "we conduct the leave-one-domain-out evaluation. We train our model on the training splits and select the best model on the validation splits of all source domains"

    But, in my opinion and according to the description in "https://github.com/facebookresearch/DomainBed", "select the best model on the validation splits of all source domains" is the "Training-domain validation" or "IIDAccuracySelectionMethod", rather than the " leave-one-domain-out evaluation".

    What's your opiniton? Thanks for your reply.

    opened by YBZh 0
  • About the division of OfficeHome dataset

    About the division of OfficeHome dataset

    Thanks for your work. There is no official division of the OfficeHome dataset. How do you divide OfficeHome into a training set and a validation set. Is the result in your paper the result of the test set corresponding to the highest accuracy of the validation set? Thanks

    opened by TomSheng21 2
  • Issue on the PACS dataset

    Issue on the PACS dataset

    First of all, thank you for your wonderful work. I found that the link to the PACS dataset (http://www.eecs.qmul.ac.uk/~dl307/project_iccv2017) is now unavailable but can be accessed at (https://dali-dl.github.io/project_iccv2017.html).

    opened by longspringcity 2
Owner
null
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

Microsoft 58 Dec 18, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

null 184 Dec 11, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 2, 2023
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 8, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 4, 2023
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

null 10 Mar 16, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 2, 2022