Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Overview

Less is More: Pay Less Attention in Vision Transformers

Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

By Zizheng Pan, Bohan Zhuang, Haoyu He, Jing Liu and Jianfei Cai.

In our paper, we present a novel Less attention vIsion Transformer (LIT), building upon the fact that convolutions, fully-connected (FC) layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences. LIT uses pure multi-layer perceptrons (MLPs) to encode rich local patterns in the early stages while applying self-attention modules to capture longer dependencies in deeper layers. Moreover, we further propose a learned deformable token merging module to adaptively fuse informative patches in a non-uniform manner.

If you use this code for a paper please cite:

@article{pan2021less,
  title={Less is More: Pay Less Attention in Vision Transformers},
  author={Pan, Zizheng and Zhuang, Bohan and He, Haoyu and Liu, Jing and Cai, Jianfei},
  journal={arXiv preprint arXiv:2105.14217},
  year={2021}
}

Usage

First, clone this repository.

git clone https://github.com/MonashAI/LIT

Next, create a conda virtual environment.

# Make sure you have a NVIDIA GPU.
cd LIT/
bash setup_env.sh [conda_install_path] [env_name]

# For example
bash setup_env.sh /home/anaconda3 lit

Note: We use PyTorch 1.7.1 with CUDA 10.1 for all experiments. The setup_env.sh has illustrated all dependencies we used in our experiments. You may want to edit this file to install a different version of PyTorch or any other packages.

Data Preparation

Download the ImageNet 2012 dataset from here, and prepare the dataset based on this script. The file structure should look like:

imagenet
├── train
│   ├── class1
│   │   ├── img1.jpeg
│   │   ├── img2.jpeg
│   │   └── ...
│   ├── class2
│   │   ├── img3.jpeg
│   │   └── ...
│   └── ...
└── val
    ├── class1
    │   ├── img4.jpeg
    │   ├── img5.jpeg
    │   └── ...
    ├── class2
    │   ├── img6.jpeg
    │   └── ...
    └── ...

Model Zoo

We provide baseline LIT models pretrained on ImageNet 2012.

Name Params (M) FLOPs (G) Top-1 Acc. (%) Model Log
LIT-Ti 19 3.6 81.1 google drive/github log
LIT-S 27 4.1 81.5 google drive/github log
LIT-M 48 8.6 83.0 google drive/github log
LIT-B 86 15.0 83.4 google drive/github log

Training and Evaluation

In our implementation, we have different training strategies for LIT-Ti and other LIT models. Therefore, we provide two codebases.

For LIT-Ti, please refer to code_for_lit_ti.

For LIT-S, LIT-M, LIT-B, please refer to code_for_lit_s_m_b.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

This repository has adopted codes from DeiT, PVT and Swin, we thank the authors for their open-sourced code.

You might also like...
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Comments
  • Problem about DCN

    Problem about DCN

    I have some problems about compiling DCN, thus it is hard for me to use the DCN.deform_conv2d_forward and DCN.deform_conv2d_backward functions. Can 'deform_conv2d_naive' be used instead of this part? Or is there other methods for me to accomplish this DCN.deform_conv2d part?

    opened by jarygrace 3
  • How to use LITNet as a beckbone of object detection

    How to use LITNet as a beckbone of object detection

    Could you please release the code of using LITNet as a beckbone of RetinaNet as mentioned in your paper? I wonder how to use it as a beckbone for object detection...

    opened by sunhuisunhui 2
Owner
null
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 7, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

?? ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 7, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

null 482 Dec 18, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 7, 2023
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match the latter’s accuracies.

VITA 20 Sep 4, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022