Exploring whether attention is necessary for vision transformers

Overview

Do You Even Need Attention?
A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Paper/Report

TL;DR

We replace the attention layer in a vision transformer with a feed-forward layer and find that it still works quite well on ImageNet.

Abstract

The strong performance of vision transformers on image classification and other vision tasks is often attributed to the design of their multi-head attention layers. However, the extent to which attention is responsible for this strong performance remains unclear. In this short report, we ask: is the attention layer even necessary? Specifically, we replace the attention layer in a vision transformer with a feed-forward layer applied over the patch dimension. The resulting architecture is simply a series of feed-forward layers applied over the patch and feature dimensions in an alternating fashion. In experiments on ImageNet, this architecture performs surprisingly well: a ViT/DeiT-base-sized model obtains 74.9% top-1 accuracy, compared to 77.9% and 79.9% for ViT and DeiT respectively. These results indicate that aspects of vision transformers other than attention, such as the patch embedding, may be more responsible for their strong performance than previously thought. We hope these results prompt the community to spend more time trying to understand why our current models are as effective as they are.

Note

This is concurrent research with MLP-Mixer from Google Research. The ideas are exacty the same, with the one difference being that they use (a lot) more compute.

Pretrained models and logs

Here is a Weights and Biases report with the expected training trajectory: W&B

name acc@1 #params url
FF-tiny 61.4 7.7M model
FF-base 74.9 62M model
FF-large 71.4 206M -

Note: I haven't uploaded the FF-Large model because (1) it's over GitHub's file storage limit, and (2) I don't see why anyone would want it, given that it performs worse than the base model. That being said, if you want it, reach out to me and I'll send it to you.

How to train

The model definition in vision_transformer_linear.py is designed to be run with the repo from DeiT, which is itself based on the wonderful timm package.

Steps:

  • Clone the DeiT repo and move the file into it
git clone https://github.com/facebookresearch/deit
mv vision_transformer_linear.py deit
cd deit
  • Add a line to import vision_transformer_linear in main.py. For example, add the following after the import statements (around line 27):
+ import vision_transformer_linear
  • Train:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--nproc_per_node=8 \
--master_port 10490 \
--use_env main.py \
--model linear_tiny \
--batch-size 128 \
--drop 0.1 \
--output_dir outputs/linear-tiny \
--data-path your/path/to/imagenet

Citation

If you build upon this idea, feel free to drop a citation (and also cite MLP-Mixer).

@article{melaskyriazi2021doyoueven,
  title={Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet},
  author={Luke Melas-Kyriazi},
  journal=arxiv,
  year=2021
}
You might also like...
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used to detect whether each face detected by the cv2 face detection dnn is wearing a mask

A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Multivariate Time Series Forecasting with efficient Transformers. Code for the paper
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Comments
  • On details about the experiments

    On details about the experiments

    In the experiment section of the report, you mention:

    Such a comparison is not exactly fair because the feed-forward model uses stronger training augmentations.

    I wonder what the augmentations are, for details about the augmentation seems missing from the paper.

    opened by boredtylin 2
  • Positional Encoding Ablation

    Positional Encoding Ablation

    Hi Luke, thank you for sharing this amazing work.

    In your arxiv document, I cannot find any mention of positional encoding, but I see that you use them in your code. Did you conduct any ablation study on the PE? i.e., how much does it affect the performance, with and without?

    Thank you in advance.

    opened by jjparkcv 0
  • Interaction between patches through a transpose may have a stronger role to play ?

    Interaction between patches through a transpose may have a stronger role to play ?

    Hi, I was going through your exp report. You have made a point that since you are able to get a good performance without using attention layer so good performance of ViT may be more to do with it's embedding layer than attention .

    But I believe, It's also may be to do with how you have established an interaction between patches through a transpose very similar to what was done in MLP-Mixer .

    Would love to know your thoughts on this ?

    opened by rakshith291 0
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

null 73 Jan 1, 2023
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 5, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 5, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

null 36 Jan 5, 2023