Cereal box identification in store shelves using computer vision and a single train image per model.

Overview

Product Recognition on Store Shelves

Description

You can read the task description here.

Report

You can read and download our report here.

Step A - Multiple Product Detection

See the results in this jupyter notebook. Or download and run it!

result example in Step A

Step B - Multiple Instance Detection

See the results in this jupyter notebook. Or download and run it!

result example in Step B

Step C - Whole shelve challenge

See the results in this jupyter notebook. Or download and run it!

result example in Step C

Packages versions

cv2: 4.4.0

numpy: 1.19.2

matplotlib: 3.3.2

Extra

  • (Optional) If you want to visualize additional information such as plots of intermediate steps of the whole process, then download and run this jupyter notebook.

Team

You might also like...
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks, each with (i) a scripted oracle that provides expert demonstrations (for imitation learning), and (ii) reward functions that provide partial credit (for reinforcement learning).

Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Computer vision - fun segmentation experience using classic and deep tools :)
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Real-Time Social Distance Monitoring tool using Computer Vision
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Owner
Nicholas Baraghini
MSC Automation Engineer Student presso l'Università di Bologna | 🐉Dragon Rider | Curious Learner
Nicholas Baraghini
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 9, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 5, 2023
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. The mouth coordinates are found in a more certified way using two independent algorithms. Therefore, the algorithm can be used in more sensitive applications.

iThermAI 4 Nov 27, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.

Martin Valchev 3 Apr 24, 2022