An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

Related tags

Deep Learning SFNet
Overview

PyTorch implementation of SFNet

no_image

This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence".

For more information, checkout the project site [website] and the paper [PDF].

Dependencies

  • Python 3.6
  • PyTorch >= 1.0.0
  • numpy
  • pandas

Datasets

  • Pascal VOC 2012 segmentation dataset (excluding images that overlap with the test split in the PF-PASCAL) for training
  • PF-Pascal & PF-WILLOW datasets for evaluation
  • All datasets are automatically downloaded into the data folder by running download_datasets.py
  • FYI: Without the need of downloading the entire data, the csv file of PF-PASCAL test split is available in the following link: [csv file]

Code

git clone https://github.com/cvlab-yonsei/SFNet.git
cd SFNet
python3 download_datasets.py # prepare the datasets for training/evaluation
python3 train.py # for training
python3 eval_pascal.py # evaluation on PF-Pascal dataset
python3 eval_willow.py # evaluation on PF-WILLOW dataset

Trained model

  • Download pre-trained weights into weights folder
    Link: [weights]

Bibtex

@inproceedings{lee2019sfnet,
  title={SFNet: Learning Object-aware Semantic Correspondence},
  author={Lee, Junghyup and Kim, Dohyung and Ponce, Jean and Ham, Bumsub},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={2278--2287},
  year={2019}
}
You might also like...
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Official code for
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

The source code of CVPR 2019 paper
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

Comments
  • google drive link all invalid

    google drive link all invalid

    hello! I find your model weights download link and your datasets download links are all invalid! so could you provide new valid links? thank you very much!

    opened by lilyNight 0
  • matching probability m_p

    matching probability m_p

    I saw your code like below.

    def softmax_with_temperature(self, x, beta, d = 1): M, _ = x.max(dim=d, keepdim=True) x = x - M # subtract maximum value for stability exp_x = torch.exp(beta*x) exp_x_sum = exp_x.sum(dim=d, keepdim=True) return exp_x / exp_x_sum

    but, in your paper, m_p(q)= softmax(beta * kp * n_p(q)).

    According to your paper, It seems that x = x - M -> x = x * M more proper. Is it right?

    opened by sunwoo76 0
  • Hi, question about data preprocessing step.

    Hi, question about data preprocessing step.

    mask = self.affine_transform(mask,affine1);
    mask = self.affine_transform(mask, affine_inverse1) # convert truncated pixels to 0
    

    why do you convert warped mask to another mask by "grid sample". Can you use the initial originial mask variable? At the annotation, you said " convert truncated pixels to 0", but "grid sample" uses bilinear and it can't get binary output.

    opened by shoutOutYangJie 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

??Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 8, 2023
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

null 3 May 1, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 2, 2023
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 8, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

null 52 Dec 30, 2022