A new data augmentation method for extreme lighting conditions.

Overview

Random Shadows and Highlights

This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme lighting conditions.

Example:

from RandomShadowsHighlights import RandomShadows

 transform = transforms.Compose([
   transforms.RandomHorizontalFlip(),
   RandomShadows(p=0.8, high_ratio=(1,2), low_ratio=(0,1), left_low_ratio=(0.4,0.8),
                 left_high_ratio=(0,0.3), right_low_ratio=(0.4,0.8), right_high_ratio=(0,0.3)),
   transforms.ToTensor(),
   transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
 ])

If you find this code useful for your research, please consider citing:

@Misc{Mazhar2021arXiv,
  author  = {Mazhar, Osama and Kober, Jens},
  note    = {arXiv:2101.05361 [cs.CV]},
  title   = {{Random Shadows and Highlights}: A New Data Augmentation Method for Extreme Lighting Conditions},
  year    = {2021},
  code    = {https://github.com/OsamaMazhar/Random-Shadows-Highlights},
  file    = {https://arxiv.org/pdf/2101.05361.pdf},
  project = {OpenDR},
  url     = {https://arxiv.org/abs/2101.05361},
}

Requirements:

torch, torchvision, numpy, cv2, PIL, argparse

In case you want to use Disk-Augmenter for comparison, then install scikit-learn as well.

Steps:

To test on TinyImageNet, the dataset needs to be converted into PyTorch dataset format. This can be done by following instructions on this repo.

Also, for EfficientNet, install EfficientNet-PyTorch from here.

To start training, use the following command:

python main.py --model_dir outputs --filename output.txt --num_epochs 20 --model_name EfficientNet --dataset TinyImageNet

For CIFAR10 or CIFAR100, use argument --dataset CIFAR10 or --dataset CIFAR100.

To train on "AlexNet", use --model_name AlexNet.

If you have any questions about this code, please do not hesitate to contact me here.

You might also like...
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

This is the official repository of XVFI (eXtreme Video Frame Interpolation)
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Owner
Osama Mazhar
Osama Mazhar
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

null 45 Dec 8, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 3, 2023
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version>=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 1, 2023