Mastering Transformers, published by Packt

Overview

Mastering Transformers

Book Name

This is the code repository for Mastering Transformers, published by Packt.

Build state-of-the-art models from scratch with advanced natural language processing techniques

What is this book about?

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library.

This book covers the following exciting features:

  • Explore state-of-the-art NLP solutions with the Transformers library
  • Train a language model in any language with any transformer architecture
  • Fine-tune a pre-trained language model to perform several downstream tasks
  • Select the right framework for the training, evaluation, and production of an end-to-end solution
  • Get hands-on experience in using TensorBoard and Weights & Biases
  • Visualize the internal representation of transformer models for interpretability

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter03.

The code will look like the following:

import pandas as pd
imdb_df = pd.read_csv("IMDB Dataset.csv")
reviews = imdb_df.review.to_string(index=None)
with open("corpus.txt", "w") as f:
      f.writelines(reviews)

Following is what you need for this book: This book is for deep learning researchers, hands-on NLP practitioners, as well as ML/NLP educators and students who want to start their journey with Transformers. Beginner-level machine learning knowledge and a good command of Python will help you get the best out of this book.

With the following software and hardware list you can run all code files present in the book (Chapter 1-11).

Software and Hardware List

Chapter Software required OS required
1-11 Python 3.6x, Transformers, Google Colaboratory, Jupyter Notebook, TensorFlow Windows, Mac OS X, and Linux (Any)
10 Docker, Locust.io Windows, Mac OS X, and Linux (Any)

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

Code in Action

Click on the following link to see the Code in Action:

https://bit.ly/3i4vFzJ

Related products

Get to Know the Author

Savaş Yıldırım He graduated from the Istanbul Technical University Department of Computer Engineering and holds a Ph.D. degree in Natural Language Processing (NLP). Currently, he is an associate professor at the Istanbul Bilgi University, Turkey, and is a visiting researcher at the Ryerson University, Canada. He is a proactive lecturer and researcher with more than 20 years of experience teaching courses on machine learning, deep learning, and NLP.

Meysam Asgari-Chenaghlu He is an AI manager at Carbon Consulting and is also a Ph.D. candidate at the University of Tabriz. He has been a consultant for Turkey's leading telecommunication and banking companies. He has also worked on various projects, including natural language understanding and semantic search.

You might also like...
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!
:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

Comments
  • cloning error when using Github Desktop Option

    cloning error when using Github Desktop Option

    Windows 10 :: image

    i have tried restarting the program and cloning. deleted folders and files. nothing clears the error.

    i've been using the cloning option for other PacktPub Codesets without problems

    opened by jbisgrove 1
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 4, 2021
null 189 Jan 2, 2023
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet ?? ???? 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 7, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

Google Research 457 Dec 23, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 ?? Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 3, 2023
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran

deepset 6.4k Jan 9, 2023
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 8, 2023