基于PaddleOCR搭建的OCR server... 离线部署用

Overview

开头说明

​ DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度但不会影响识别的精度,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

​ 此项目底层基于百度开源的PaddleOCR搭建,这是团子第一次尝试自己封装离线的OCR,遇到了不少坑,也受到了不少人的帮助才顺利完成这第一个版本此离线版本以后都会开源,团子也会慢慢优化它的精度和速度,也欢迎对OCR领域有所研究的大佬能一起讨论研究

DangoOCR 源码地址 希望能收到你点的 Star ~ 团子感激不尽

团子翻译器 源码地址 配合翻译器 Ver3.6 及其以上版本使用,啃生肉!

b站个人主页 关于翻译器的任何事宜,团子都会第一时间在b站的动态发布,希望能得到你的关注~

特别鸣谢

PaddleOCR 项目地址 项目底层基于此框架搭建

QPT 打包工具地址 推荐开发者了解一下这个打包工具,比 pyinstaller 好用!DangoOCR 就是使用此工具打包的 ~ 感谢作者

使用前注意

目前 DangoOCR 只可以运行在全英文的路径,路径带有中文会报错,以后的版本会修复此问题,见下图说明:

错误演示

路径带的 "团子" ,有中文启动会失败

image-20210701223423557

正确演示

image-20210701224518547

特别说明

对于盘符,D盘C盘E盘,盘符及其之前的路径带有中文是没有关系,不会影响的

image-20210701224626396

安装和启动

第一次启动需要初始化(安装),切勿关闭黑色的运行窗口,待进度条满后初始化完毕,只有第一次启动才会有进度条

image-20210701222858629

如弹出,点允许访问

image-20210701223004058

出现如下情况,则启动完毕,可以配合翻译器直接使用了,使用过程中千万不可以关掉此运行的黑窗口,直接缩小即可

image-20210701223025840

注意翻译器此处不要打勾,不要打勾,如果打勾就是使用百度的OCR,当然你有高额度的百度OCR账号优先用百度OCR会更好

image-20210701235359751

测试工具

可以在不使用翻译器的情况下简单测试自己的 DangoOCR 是否正常

image-20210701235626384

记得先完成 DangoOCR 的运行,再启动此脚本测试,可以测试使用速度

image-20210701235640888

如图完成测试,团子的测试结果是平均 0.81s,垃圾CPU

image-20210701235941050

You might also like...
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Make Watson Assistant send messages to your Discord Server
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Comments
  • 打扰了,请问怎么 qpt 打包

    打扰了,请问怎么 qpt 打包

    D:\a\DangoOCR\DangoOCR>python -m pip install qpt 
    Collecting qpt
      Downloading QPT-1.0b4.dev[6](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507008102/jobs/5874415216#step:4:7)-py3-none-any.whl (525 kB)
         -------------------------------------- 526.0/526.0 kB 6.6 MB/s eta 0:00:00
    Collecting pefile
      Downloading pefile-2022.5.30.tar.gz ([7](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507008102/jobs/5874415216#step:4:8)2 kB)
         ---------------------------------------- 72.9/72.9 kB 3.9 MB/s eta 0:00:00
      Preparing metadata (setup.py): started
      Preparing metadata (setup.py): finished with status 'done'
    Requirement already satisfied: click in c:\hostedtoolcache\windows\python\3.9.13\x64\lib\site-packages (from qpt) ([8](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507008102/jobs/5874415216#step:4:9).1.3)
    Collecting toml
      Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB)
    Collecting pillow
      Downloading Pillow-[9](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507008102/jobs/5874415216#step:4:10).3.0-cp39-cp39-win_amd64.whl (2.5 MB)
         ---------------------------------------- 2.5/2.5 MB 26.4 MB/s eta 0:00:00
    Collecting wget
      Downloading wget-3.2.zip ([10](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507008102/jobs/5874415216#step:4:11) kB)
      Preparing metadata (setup.py): started
      Preparing metadata (setup.py): finished with status 'done'
    Requirement already satisfied: pip>=22.1.1 in c:\hostedtoolcache\windows\python\3.9.13\x64\lib\site-packages (from qpt) (22.3)
    Requirement already satisfied: colorama in c:\hostedtoolcache\windows\python\3.9.13\x64\lib\site-packages (from click->qpt) (0.4.6)
    Collecting future
      Downloading future-0.18.2.tar.gz (829 kB)
         ------------------------------------- 829.2/829.2 kB 17.4 MB/s eta 0:00:00
      Preparing metadata (setup.py): started
      Preparing metadata (setup.py): finished with status 'done'
    Installing collected packages: wget, toml, pillow, future, pefile, qpt
      DEPRECATION: wget is being installed using the legacy 'setup.py install' method, because it does not have a 'pyproject.toml' and the 'wheel' package is not installed. pip 23.1 will enforce this behaviour change. A possible replacement is to enable the '--use-pep517' option. Discussion can be found at https://github.com/pypa/pip/issues/8559
      Running setup.py install for wget: started
      Running setup.py install for wget: finished with status 'done'
      DEPRECATION: future is being installed using the legacy 'setup.py install' method, because it does not have a 'pyproject.toml' and the 'wheel' package is not installed. pip 23.1 will enforce this behaviour change. A possible replacement is to enable the '--use-pep517' option. Discussion can be found at https://github.com/pypa/pip/issues/8559
      Running setup.py install for future: started
      Running setup.py install for future: finished with status 'done'
      DEPRECATION: pefile is being installed using the legacy 'setup.py install' method, because it does not have a 'pyproject.toml' and the 'wheel' package is not installed. pip 23.1 will enforce this behaviour change. A possible replacement is to enable the '--use-pep517' option. Discussion can be found at https://github.com/pypa/pip/issues/8559
      Running setup.py install for pefile: started
      Running setup.py install for pefile: finished with status 'done'
    Successfully installed future-0.18.2 pefile-2022.5.30 pillow-9.3.0 qpt-1.0b4.dev6 toml-0.10.2 wget-3.2
    
    Notice:  A new release of pip available: 22.3 -> 22.3.1
    Notice:  To update, run: python.exe -m pip install --upgrade pip
    
    [D:\a\DangoOCR\DangoOCR>chcp 65001 
    Active code page: 65001
    
    D:\a\DangoOCR\DangoOCR>qpt.exe -f .\ -p .\app.py -r auto -s .\qpt_out -h False 
    \u2192[2022-11-20 08:15:35,664] [DEBUG] | \u64cd\u4f5c\u7cfb\u7edf\u7c7b\u578b\uff1aWindows
    \u2192[2022-11-20 08:15:35,664] [DEBUG] | \u64cd\u4f5c\u7cfb\u7edf\u4f4d\u6570\uff1aAMD64
    Warning: 22-11-20 08:15:35,664] [WARNING] | C:\Users\RUNNER~1\AppData\Local\Temp\QPT_Cache_V/1.0b4.dev6\u4e2d ~ \u5b57\u7b26\u4f1a\u53ef\u80fd\u5f71\u54cd\u4f7f\u7528\u3002
    Warning: 22-11-20 08:15:35,664] [WARNING] | \u5f53\u524d\u7cfb\u7edf\u7684\u7528\u6237\u540d\u4e2d\u5305\u542b\u4e2d\u6587/\u7a7a\u683c\u7b49\u53ef\u80fd\u4f1a\u5bf9\u7a0b\u5e8f\u9020\u6210\u5f02\u5e38\u7684\u5b57\u7b26\uff0c\u73b0\u5df2\u9ed8\u8ba4QPT\u4e34\u65f6\u76ee\u5f55\u4e3aC:/q_tmp
    \u2192[2022-11-20 08:15:35,930] [INFO] | -----------------------------QPT--------------------------------
    \u2192[2022-11-20 08:15:35,930] [INFO] | \u5f53\u524d\u6267\u884c\u6a21\u5f0f\u4e3a\u5[47](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:48)d\u4ee4\u5f0f\u6267\u884c\uff0c\u4ec5\u63d0\u4f9bQPT\u57fa\u7840\u529f\u80fd\uff0c\u9ad8\u9636\u64cd\u4f5c\u53ef\u5728GitHub\u53c2\u8003\u6700\u65b0\u6587\u6863
    \u2192[2022-11-20 08:15:35,930] [INFO] |             https://github.com/GT-ZhangAcer/QPT
    \u2192[2022-11-20 08:15:35,930] [INFO] | -----------------------------QPT--------------------------------
    \u2192[2022-11-20 08:15:35,930] [INFO] | [--folder]\u5f85\u6253\u5305\u7684\u6587\u4ef6\u5939\u8def\u5f84\u4e3a	D:\a\DangoOCR\DangoOCR
    \u2192[2022-11-20 08:15:35,930] [INFO] | [--py]\u5f85\u6253\u5305\u7684\u4e3bPython\u6587\u4ef6\u8def\u5f84\u4e3a	D:\a\DangoOCR\DangoOCR\app.py
    \u2192[2022-11-20 08:15:35,930] [INFO] | [--save]\u6253\u5305\u540e\u6587\u4ef6\u4fdd\u5b58\u8def\u5f84\u4e3a	D:\a\DangoOCR\DangoOCR\qpt_out
    \u2192[2022-11-20 08:15:35,930] [INFO] | [--require]\u4f7f\u7528\u81ea\u52a8\u5316\u4f9d\u8d56\u67e5\u627eModule\uff1aAutoRequirementsPackage
    \u2192[2022-11-20 08:15:35,930] [INFO] | [--hidden]\u5f53\u524d\u6253\u5305\u6a21\u5f0f\u4e3a\uff1a\u663e\u793aTerminal\u7a97\u53e3\uff08\u5c31\u662f\u7528\u6237\u6253\u5f00\u540e\u7684\u90a3\u4e2a\u9ed1\u8272\u6846\u6846\uff0c\u53ef\u901a\u8fc7\u6307\u5b9a -h True \u547d\u4ee4\u6765\u9690\u85cf\uff09
    \u2192[2022-11-20 08:15:35,930] [INFO] | QPT\u4f7f\u7528\u547d\u4ee4\u53ef\u8f93\u5165\uff1aqpt --help \u83b7\u53d6
    \u2192[2022-11-20 08:15:35,930] [DEBUG] | SHELL: chcp 65001
    \u2192[2022-11-20 08:15:36,008] [DEBUG] | Windows PowerShell
    \u2192[2022-11-20 08:15:36,008] [DEBUG] | Copyright (C) Microsoft Corporation. All rights reserved.
    \u2192[2022-11-20 08:15:36,008] [DEBUG] | Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
    \u2192[2022-11-20 08:15:36,523] [DEBUG] | PS D:\a\DangoOCR\DangoOCR> chcp 65001 ; echo "---QPT OUTPUT STATUS CODE---" $? 
    \u2192[2022-11-20 08:15:36,539] [DEBUG] | Active code page: 65001
    \u2192[2022-11-20 08:15:36,617] [DEBUG] | \u7ec8\u7aef\u547d\u4ee4\u6267\u884c\u6210\u529f\uff01
    \u2192[2022-11-20 08:15:36,617] [DEBUG] | \u6b63\u5728\u8fde\u63a5PIPTerminal
    \u2192[2022-11-20 08:15:36,6[48](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:49)] [DEBUG] | \u5df2\u8bbe\u7f6ePIP\u8de8\u7248\u672c\u7f16\u8bd1\u6a21\u5f0f\uff0c\u76ee\u6807\u89e3\u91ca\u5668\u8def\u5f84\u4e3a\uff1a.\qpt_out\Release\Python\python.exe
    Warning: 22-11-20 08:15:36,648] [WARNING] | \u68c0\u6d4b\u5230.github\uff0c\u63a8\u6d4b\u51faD:\a\DangoOCR\DangoOCR\u4e3a.github\u76ee\u5f55\uff0c\u5728\u6253\u5305\u65f6\u4f1a\u5ffd\u7565\u8be5\u76ee\u5f55
    Warning: 22-11-20 08:15:36,648] [WARNING] | \u68c0\u6d4b\u5230.git\uff0c\u63a8\u6d4b\u51faD:\a\DangoOCR\DangoOCR\u4e3a.git\u76ee\u5f55\uff0c\u5728\u6253\u5305\u65f6\u4f1a\u5ffd\u7565\u8be5\u76ee\u5f55
    \u2192[2022-11-20 08:15:36,648] [INFO] | \u5f53\u524d\u89e3\u91ca\u5668\u7248\u672c\u4e3a3.9.13\uff0c\u6b63\u5728\u5411QPT\u67e5\u8be2\u662f\u5426\u5b58\u5728\u5408\u9002\u7684Python\u955c\u50cf...
    \u2192[2022-11-20 08:15:36,648] [INFO] | \u5df2\u5728QPT\u4e2d\u627e\u5230Python3.9Env-Win\u955c\u50cf
    \u2192[2022-11-20 08:15:36,648] [INFO] | [Auto]\u6b63\u5728\u5206\u6790D:\a\DangoOCR\DangoOCR\u4e0b\u7684\u4f9d\u8d56\u60c5\u51b5...
    Warning: 22-11-20 08:15:36,648] [WARNING] | userpath\u5305top_level.txt\u7f3a\u5931\uff0c\u53ef\u80fd\u65e0\u6cd5\u6b63\u5e38\u641c\u7d22\u5230\u76f8\u5173\u4f9d\u8d56
    Warning: 22-11-20 08:15:36,664] [WARNING] | pyparsing\u5305top_level.txt\u7f3a\u5931\uff0c\u53ef\u80fd\u65e0\u6cd5\u6b63\u5e38\u641c\u7d22\u5230\u76f8\u5173\u4f9d\u8d56
    Warning: 22-11-20 08:15:36,664] [WARNING] | pipx\u5305top_level.txt\u7f3a\u5931\uff0c\u53ef\u80fd\u65e0\u6cd5\u6b63\u5e38\u641c\u7d22\u5230\u76f8\u5173\u4f9d\u8d56
    Warning: 22-11-20 08:15:36,664] [WARNING] | colorama\u5305top_level.txt\u7f3a\u5931\uff0c\u53ef\u80fd\u65e0\u6cd5\u6b63\u5e38\u641c\u7d22\u5230\u76f8\u5173\u4f9d\u8d56
    \u2192[2022-11-20 08:15:36,743] [INFO] | \u2192[2022-11-20 08:15:36,743] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	1/134  |                    | 0.75% \u5bf9\u5e94\u6587\u4ef6:.\app.py\u2192[2022-11-20 08:15:36,758] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	2/134  |                    | 1.[49](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:50)% \u5bf9\u5e94\u6587\u4ef6:.\flask\app.py\u2192[2022-11-20 08:15:36,774] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	3/134  |                    | 2.24% \u5bf9\u5e94\u6587\u4ef6:.\flask\blueprints.py\u2192[2022-11-20 08:15:36,774] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	4/134  |                    | 2.99% \u5bf9\u5e94\u6587\u4ef6:.\flask\cli.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	5/134  |                    | 3.73% \u5bf9\u5e94\u6587\u4ef6:.\flask\config.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	6/134  |                    | 4.48% \u5bf9\u5e94\u6587\u4ef6:.\flask\ctx.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	7/134  |\u2[50](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:51)1                   | 5.22% \u5bf9\u5e94\u6587\u4ef6:.\flask\debughelpers.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	8/134  |\u2501                   | 5.97% \u5bf9\u5e94\u6587\u4ef6:.\flask\globals.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	9/134  |\u2501                   | 6.72% \u5bf9\u5e94\u6587\u4ef6:.\flask\helpers.py\u2192[2022-11-20 08:15:36,789] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	10/134  |\u2501                   | 7.46% \u5bf9\u5e94\u6587\u4ef6:.\flask\logging.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	11/134  |\u2501                   | 8.21% \u5bf9\u5e94\u6587\u4ef6:.\flask\scaffold.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	12/134  |\u2501                   | 8.96% \u5bf9\u5e94\u6587\u4ef6:.\flask\sessions.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	13/134  |\u2501                   | 9.70% \u5bf9\u5e94\u6587\u4ef6:.\flask\signals.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	14/134  |\u2501\u2501                  | 10.45% \u5bf9\u5e94\u6587\u4ef6:.\flask\templating.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	15/134  |\u2501\u2501                  | 11.19% \u5bf9\u5e94\u6587\u4ef6:.\flask\testing.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	16/134  |\u2501\u2501                  | 11.94% \u5bf9\u5e94\u6587\u4ef6:.\flask\typing.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	17/134  |\u2501\u2501                  | 12.69% \u5bf9\u5e94\u6587\u4ef6:.\flask\views.py\u2192[2022-11-20 08:15:36,805] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	18/134  |\u2501\u2501                  | 13.43% \u5bf9\u5e94\u6587\u4ef6:.\flask\wrappers.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	19/134  |\u2501\u2501                  | 14.18% \u5bf9\u5e94\u6587\u4ef6:.\flask\__init__.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	20/134  |\u2501\u2501                  | 14.93% \u5bf9\u5e94\u6587\u4ef6:.\flask\__main__.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	21/134  |\u2501\u2501\u2501                 | 15.67% \u5bf9\u5e94\u6587\u4ef6:.\flask\json\tag.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	22/134  |\u2501\u2501\u2501                 | 16.42% \u5bf9\u5e94\u6587\u4ef6:.\flask\json\__init__.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	23/134  |\u2501\u2501\u2501                 | 17.16% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\paddleocr.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	24/134  |\u2501\u2501\u2501                 | 17.91% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\__init__.py\u2192[2022-11-20 08:15:36,820] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	25/134  |\u2501\u2501\u2501                 | 18.66% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\collate_fn.py\u2192[2022-11-20 08:15:36,836] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	26/134  |\u2501\u2501\u2501                 | 19.40% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\lmdb_dataset.py\u2192[2022-11-20 08:15:36,836] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	27/134  |\u2501\u2501\u2501\u2501                | 20.15% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\pgnet_dataset.py\u2192[2022-11-20 08:15:36,836] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	28/134  |\u2501\u2501\u2501\u2501                | 20.90% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\pubtab_dataset.py\u2192[2022-11-20 08:15:36,836] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	29/134  |\u2501\u2501\u2501\u2501                | 21.64% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\simple_dataset.py\u2192[2022-11-20 08:15:36,836] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	30/134  |\u2501\u2501\u2501\u2501                | 22.39% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\__init__.py\u2192[2022-11-20 08:15:36,852] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	31/134  |\u2501\u2501\u2501\u2501                | 23.13% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\abinet_aug.py\u2192[2022-11-20 08:15:36,852] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	32/134  |\u2501\u2501\u2501\u2501                | 23.88% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\ColorJitter.py\u2192[2022-11-20 08:15:36,852] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	33/134  |\u2501\u2501\u2501\u2501                | 24.63% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\copy_paste.py\u2192[2022-11-20 08:15:36,852] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	34/134  |\u2501\u2501\u2501\u2501\u2501               | 25.37% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\east_process.py\u2192[2022-11-20 08:15:36,867] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	35/134  |\u2501\u2501\u2501\u2501\u2501               | 26.12% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\fce_aug.py\u2192[2022-11-20 08:15:36,883] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	36/134  |\u2501\u2501\u2501\u2501\u2501               | 26.87% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\fce_targets.py\u2192[2022-11-20 08:15:36,883] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	37/134  |\u2501\u2501\u2501\u2501\u2501               | 27.61% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\iaa_augment.py\u2192[2022-11-20 08:15:36,899] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	38/134  |\u2501\u2501\u2501\u2501\u2501               | 28.36% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\label_ops.py\u2192[2022-11-20 08:15:36,914] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	39/134  |\u2501\u2501\u2501\u2501\u2501               | 29.10% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\make_border_map.py\u2192[2022-11-20 08:15:36,914] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	40/134  |\u2501\u2501\u2501\u2501\u2501               | 29.85% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\make_pse_gt.py\u2192[2022-11-20 08:15:36,914] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	41/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 30.60% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\make_shrink_map.py\u2192[2022-11-20 08:15:36,930] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	42/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 31.34% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\operators.py\u2192[2022-11-20 08:15:36,945] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	43/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 32.09% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\pg_process.py\u2192[2022-11-20 08:15:36,945] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	44/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 32.84% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\randaugment.py\u2192[2022-11-20 08:15:36,945] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	45/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 33.58% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\random_crop_data.py\u2192[2022-11-20 08:15:36,961] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	46/134  |\u2501\u2501\u2501\u2501\u2501\u2501              | 34.33% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\rec_img_aug.py\u2192[2022-11-20 08:15:36,977] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	47/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 35.07% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\sast_process.py\u2192[2022-11-20 08:15:36,977] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	48/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 35.82% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\ssl_img_aug.py\u2192[2022-11-20 08:15:36,977] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	49/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 36.57% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\table_ops.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	50/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 37.31% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\__init__.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[51](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:52)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 38.06% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\text_image_aug\augment.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[52](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:53)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 38.81% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\text_image_aug\warp_mls.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[53](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:54)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501             | 39.55% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\text_image_aug\__init__.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[54](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:55)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 40.30% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\augment.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[55](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:56)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 41.04% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\__init__.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d[56](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:57)	56/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 41.79% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\token\vqa_token_chunk.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u[57](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:58)28\u641c\u7d22\u4f9d\u8d56	57/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 42.54% \u5bf9\u5e94\u6[58](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:59)7\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\token\vqa_token_pad.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	58/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 43.28% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\token\vqa_token_relation.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[59](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:60)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 44.03% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\data\imaug\vqa\token\__init__.py\u2192[2022-11-20 08:15:36,992] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[60](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:61)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501            | 44.78% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\cls_postprocess.py\u2192[2022-11-20 08:15:37,008] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[61](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:62)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 45.52% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\db_postprocess.py\u2192[2022-11-20 08:15:37,008] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[62](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:63)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 46.27% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\east_postprocess.py\u2192[2022-11-20 08:15:37,008] [INFO] | 
    \u6b[63](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:64)\u5728\u[64](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:65)1c\u7d22\u4f9d\u8d56	63/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 47.01% \u5bf9\u5e94\u[65](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:66)87\u4ef6:.\paddleocr\ppocr\postprocess\fce_postprocess.py\u2192[2022-11-20 08:15:37,008] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	64/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 47.76% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\locality_aware_nms.py\u2192[2022-11-20 08:15:37,008] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	65/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 48.51% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\pg_postprocess.py\u2192[2022-11-20 08:15:37,024] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[66](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:67)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501           | 49.25% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\picodet_postprocess.py\u2192[2022-11-20 08:15:37,024] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[67](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:68)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 50.00% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\rec_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[68](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:69)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 50.75% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\sast_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[69](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:70)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 51.49% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\table_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[70](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:71)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 52.24% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\vqa_token_re_layoutlm_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[71](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:72)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 52.99% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\vqa_token_ser_layoutlm_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5[72](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:73)8\u641c\u7d22\u4f9d\u8d56	72/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 53.[73](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:74)% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\__init__.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	73/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501          | 54.48% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\pse_postprocess\pse_postprocess.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[74](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:75)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 55.22% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\pse_postprocess\__init__.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[75](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:76)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 55.97% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\pse_postprocess\pse\setup.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[76](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:77)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 56.72% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\postprocess\pse_postprocess\pse\__init__.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[77](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:78)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 57.46% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\gen_label.py\u2192[2022-11-20 08:15:37,039] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[78](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:79)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 58.21% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\iou.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[79](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:80)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 58.96% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\logging.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[80](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:81)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501         | 59.70% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\network.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[81](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:82)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 60.45% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\poly_nms.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[82](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:83)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 61.19% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\profiler.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[83](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:84)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 61.94% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\save_load.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[84](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:85)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 62.69% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\stats.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[85](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:86)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 63.43% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\utility.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[86](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:87)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 64.18% \u5bf9\u5e94\u65[87](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:88)\u4ef6:.\paddleocr\ppocr\utils\visual.py\u2192[2022-11-20 08:15:37,055] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	87/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501        | 64.93% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\__init__.py\u2192[2022-11-20 08:15:37,070] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[88](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:89)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 65.67% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_metric\Deteval.py\u2192[2022-11-20 08:15:37,070] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[89](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:90)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 66.42% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_metric\polygon_fast.py\u2192[2022-11-20 08:15:37,070] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[90](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:91)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 67.16% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_utils\extract_batchsize.py\u2192[2022-11-20 08:15:37,086] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[91](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:92)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 67.91% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_utils\extract_textpoint_fast.py\u21[92](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:93)[2022-11-20 08:15:37,086] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	92/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 68.66% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_utils\extract_textpoint_slow.py\u2192[2022-11-20 08:15:37,086] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[93](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:94)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501       | 69.40% \u5bf9\u5e[94](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:95)\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_utils\pgnet_pp_utils.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	94/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 70.15% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\e2e_utils\visual.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[95](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:96)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 70.90% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\loggers\base_logger.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[96](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:97)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 71.64% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\loggers\loggers.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[97](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:98)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 72.39% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\loggers\vdl_logger.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[98](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:99)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 73.13% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\loggers\wandb_logger.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[99](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:100)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 73.88% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppocr\utils\loggers\__init__.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[100](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:101)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501      | 74.63% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\predict_system.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[101](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:102)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 75.37% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\utility.py\u2192[2022-11-20 08:15:37,[102](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:103)] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	102/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 76.12% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\__init__.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[103](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:104)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 76.87% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\kie\predict_kie_token_ser.py\u2192[2022-11-20 08:15:37,102] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[104](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:105)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 77.61% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\kie\tools\eval_with_label_end2end.py\u2192[2022-11-20 08:15:37,117] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[105](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:106)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 78.36% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\kie\tools\trans_funsd_label.py\u2192[2022-11-20 08:15:37,117] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[106](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:107)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 79.10% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\kie\tools\trans_xfun_data.py\u2192[2022-11-20 08:15:37,117] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[107](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:108)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501     | 79.85% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\layout\predict_layout.py\u2192[2022-11-20 08:15:37,117] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[108](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:109)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 80.60% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\layout\__init__.py\u2192[2022-11-20 08:15:37,133] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[109](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:110)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 81.34% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\pdf2word\pdf2word.py\u2192[2022-11-20 08:15:37,133] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[110](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:111)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 82.09% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\recovery\recovery_to_doc.py\u2192[2022-11-20 08:15:37,133] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[111](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:112)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 82.84% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\recovery\table_process.py\u2192[2022-11-20 08:15:37,133] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[112](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:113)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 83.58% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\recovery\__init__.py\u2192[2022-11-20 08:15:37,149] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[113](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:114)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501    | 84.33% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\convert_label2html.py\u2192[2022-11-20 08:15:37,149] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[114](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:115)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 85.07% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\eval_table.py\u2192[2022-11-20 08:15:37,149] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[115](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:116)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 85.82% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\matcher.py\u2192[2022-11-20 08:15:37,149] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[116](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:117)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 86.57% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\predict_structure.py\u2192[2022-11-20 08:15:37,149] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[117](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:118)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 87.31% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\predict_table.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[118](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:119)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 88.06% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\table_master_match.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[119](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:120)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 88.81% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\__init__.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[120](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:121)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   | 89.55% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\tablepyxl\style.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[121](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:122)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 90.30% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\tablepyxl\tablepyxl.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[122](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:123)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 91.04% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\tablepyxl\__init__.py\u2192[2022-11-20 08:15:37,164] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[123](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:124)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 91.79% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\table_metric\parallel.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[124](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:125)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 92.54% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\table_metric\table_metric.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[125](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:126)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 93.28% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\ppstructure\table\table_metric\__init__.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[126](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:127)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 94.03% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\__init__.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[127](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:128)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  | 94.78% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_cls.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[128](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:129)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 95.52% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_det.py\u2192[2022-11-20 08:15:37,180] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[129](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:130)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 96.27% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_e2e.py\u2192[2022-11-20 08:15:37,195] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[130](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:131)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 97.01% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_rec.py\u2192[2022-11-20 08:15:37,195] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[131](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:132)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 97.76% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_sr.py\u2192[2022-11-20 08:15:37,195] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[132](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:133)/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 98.51% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\predict_system.py\u2192[2022-11-20 08:15:37,211] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	[133](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:134)/[134](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:135)  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 | 99.25% \u5bf9\u5e94\u6587\u4ef6:.\paddleocr\tools\infer\utility.py\u2192[2022-11-20 08:15:37,211] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	134/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501| 100.00% \u5bf9\u5e94\u6587\u4ef6:.\test\post.py\u2192[2022-11-20 08:15:37,211] [INFO] | 
    \u6b63\u5728\u641c\u7d22\u4f9d\u8d56	134/134  |\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501| 100.00% \u5bf9\u5e94\u6587\u4ef6:.\test\post.py
    \u2192[2022-11-20 08:15:37,211] [INFO] | \u4f9d\u8d56\u5206\u6790\u5b8c\u6bd5!
    \u5df2\u5728D:\a\DangoOCR\DangoOCR\requirements_with_opt.txt \u4e2d\u521b\u5efa\u4e86\u4f9d\u8d56\u5217\u8868
    Tips 1: \u67e5\u770b\u6587\u4ef6\u540e\u53ef\u80fd\u9700\u8981\u5173\u95ed\u67e5\u770b\u8be5\u6587\u4ef6\u7684\u6587\u672c\u67e5\u770b\u5668\uff0c\u8fd9\u6837\u53ef\u4ee5\u6709\u6548\u907f\u514d\u6587\u4ef6\u88ab\u5360\u7528
    Tips 2: \u8bf7\u52a1\u5fc5\u68c0\u67e5\u4e0a\u65b9\u6587\u4ef6\u4e2d\u6240\u5199\u5[165](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:166)\u7684\u4f9d\u8d56\u5217\u8868\u60c5\u51b5\uff0c\u56e0\u4e3a\u81ea\u52a8\u5[206](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:207)\u6790\u5e76\u4e0d\u80fd\u4fdd\u8bc1\u7a0b\u5e8f\u4f9d\u8d56\u5747\u53ef\u4ee5\u88ab\u68c0\u51fa
            \u82e5\u5728\u6267\u884cEXE\u65f6\u63d0\u793a:ImportError: No module named xxx \u62a5\u9519\u4fe1\u606f\uff0c\u8bf7\u5728\u8be5\u4f9d\u8d56\u6587\u4ef6\u4e2d\u52a0\u5165xxx\u6[216](https://github.com/newbuggerorg1/DangoOCR/actions/runs/3507126515/jobs/5874618631#step:4:217)\u53d6\u6d88xxx\u524d\u7684 # \u7b26\u53f7
    ---------------------------------------------------------------------
    \u8bf7\u5728\u68c0\u67e5/\u4fee\u6539\u4f9d\u8d56\u6587\u4ef6\u540e\u5728\u6b64\u5904\u6309\u4e0b\u56de\u8f66\u952e\u7ee7\u7eed...
    \u8bf7\u952e\u5165\u6307\u4ee4[\u56de\u8f66\u952e - \u4e00\u6b21\u4e0d\u884c\u53ef\u4ee5\u8bd5\u8bd5\u6309\u4e24\u6b21]:_
    Aborted!
    Error: Process completed with exit code 1.
    
    opened by NewBugger 14
  • 无法运行

    无法运行

    D:\Programs\Dango\dangoocr>"./Python/python.exe" -c "import sys;sys.path.append('./Python');sys.path.append('./Python/Lib');sys.path.append('./Python/Lib/site-packages');sys.path.append('./Python/Scripts');import qpt.run as run" 2022-03-27 17:25:45,116 INFO: UA请求完毕 Traceback (most recent call last): File "", line 1, in File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\run.py", line 12, in module = RunExecutableModule("./") File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\executor.py", line 360, in init set_default_pip_lib(self.interpreter_path) File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\interpreter.py", line 229, in set_default_pip_lib PIP.pip_main = PIPTerminal(interpreter_path).shell_func() File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\interpreter.py", line 21, in init super(PIPTerminal, self).init() File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\terminal.py", line 138, in init super(PTerminal, self).init() File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\terminal.py", line 92, in init self.init_terminal() File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\terminal.py", line 147, in init_terminal self._shell_func()(prepare) File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\terminal.py", line 169, in closure callback.handle(self.main_terminal) File "D:\Programs\Dango\dangoocr\Python\lib\site-packages\qpt\kernel\tools\terminal.py", line 67, in handle msg = line.decode('gbk').strip("b'").strip("\n").strip(SHELL_ACT) UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 47: illegal multibyte sequence

    opened by mskgroup 0
Owner
胖次团子
团子翻译器作者...
胖次团子
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 7, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

null 82 Nov 29, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
OpenVisionAPI server

?? Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 4, 2023
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 5, 2023
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

null 2 Mar 26, 2022