CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

Overview

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI-Context-Aware Interpretable Point-of-Interest Recommendation Framework

This repository contains a framework for Recommender Systems (RecSys), allowing users to choose a dataset on a model based on their demand.

CAPRI Overview

CAPRI

☑️ Prerequisites

You will need below libraries to be installed before running the application:

  • Python >= 3.4
  • NumPy >= 1.19
  • SciPy >= 1.6
  • PyInquirer >= 1.0.3

For a simple solution, you can simply run the below command in the root directory:

pip install -r prerequisites.txt

🚀 Launch the Application

Start the project by running the main.py in the root directory. With this, the application settings are loaded from the config.py file. You can select from different options to choose a model (e.g. GeoSoCa, available on the Models folder) and a dataset (e.g. Yelp, available on the Data folder) to be processed by the selected model, along with a fusion operator (e.g. prodect or sum). The system starts processing data using the selected model and provides some evaluations on it as well. The final results will be added to the Generated folder, withe the name template representing which model has been emplyed on which dataset and with what item selection rate.

🧩 Contribution Guide

Contribution to the project can be done through various approaches:

Adding a new dataset

All datasets can be found in ./Data/ directory. In order to add a new dataset, you should:

  • Modify the config.py file and add a record to the datasets dictionary. The key of the item should be the dataset's name (CapitalCase) and the value is an array of strings containing the dataset scopes (all CapitalCase). For instance
"DatasetName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Data/ directory with the exact same name selected in the previous step. This way, your configs are attached to the dataset. In the created folder, add files of the dataset (preferably camelCase, e.g. socialRelations). Note that for each of these files, a variable with the exact same name will be automatically generated and fed to the models section. You can find a sample for the dataset sturcture here:
+ Data/
	+ Dataset1
		+ datasetFile1
		+ datasetFile2
		+ datasetFile3
	+ Dataset2
		+ datasetFile4
		+ datasetFile5
		+ datasetFile6

Adding a new model

Models can be found in ./Models/ directory. In order to add a new model, you should:

  • Modify the config.py file and add a record to the models dictionary. The key of the item should be the model's name (CapitalCase) and the value is an array of strings containing the scopes that mode covers (all CapitalCase). For instance
"ModelName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Models/ directory with the exact same name selected in the previous step. This way, your configs are attached to the model. In the created folder, add files of the model (preferably camelCase, e.g. socialRelations). Models contain a main.py file that holds the contents of the model. The file main.py contains a class with the exact name of the model and the letter 'Main' (e.g. ModelNameMain). This class should contain a main function with two argument: (i) datasetFiles dictionary, (ii) the parameters of the selected model (including top-K items for evaluation, sparsity ratio, restricted list for computation, and dataset name). For a better description, check the code sample below:
import numpy as np
...

class NewModelMain:
	def main(datasetFiles, parameters):
		print('Other codes goes here')

There is a utils.py file in the ./Models/ directory that keeps the utilities that can be used in all models. If you are thinking about a customized utilities with other functions, you can add an extendedUtils.py file in the model's directory. Also, a /lib/ directory is considered in each model folders that contains the libraries used in the model. You can find a sample for the dataset sturcture here:

+ Models/
	+ Model1/
		+ lib/
		+ __init__.py
		+ main.py
		+ extendedUtils.py
	+ utils.py
	+ __init__.py

Note: do not forget to add a init.py file to the directories you make.

Adding a new evaluation

You can simply add the evaluations to the ./Evaluations/metrics.py file.

⚠️ TODOs

  • Add a proper caching policy to check the Generated directory
  • Unifying saveModel and loadModel in utils.py
  • Add the impact of fusions when running models
  • Add a logging functionality
You might also like...
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Official public repository of paper
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Implementation of the
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Owner
RecSys Lab
The RecSys Lab is a collaboration to investigate a new view of analysis in the domain of recommendation.
RecSys Lab
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 2, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 8, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 1, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

null 136 Dec 12, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022