A Lightweight Hyperparameter Optimization Tool ๐Ÿš€

Overview

Lightweight Hyperparameter Optimization ๐Ÿš€

Pyversions PyPI version Code style: black Colab

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline. It supports real, integer & categorical search variables and single- or multi-objective optimization.

Core features include the following:

  • API Simplicity: strategy.ask(), strategy.tell() interface & space definition.
  • Strategy Diversity: Grid, random, coordinate search, SMBO & wrapping around FAIR's nevergrad.
  • Search Space Refinement based on the top performing configs via strategy.refine(top_k=10).
  • Export of configurations to execute via e.g. python train.py --config_fname config.yaml.
  • Storage & reload search logs via strategy.save( ) , strategy.load( ) .

For a quickstart check out the notebook blog ๐Ÿ“– .

The API ๐ŸŽฎ

from mle_hyperopt import RandomSearch

# Instantiate random search class
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 32,
                                                "end": 128,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]})

# Simple ask - eval - tell API
configs = strategy.ask(5)
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)

Implemented Search Types ๐Ÿ”ญ

Search Type Description search_config
drawing GridSearch Search over list of discrete values -
drawing RandomSearch Random search over variable ranges refine_after, refine_top_k
drawing CoordinateSearch Coordinate-wise optimization with fixed defaults order, defaults
drawing SMBOSearch Sequential model-based optimization base_estimator, acq_function, n_initial_points
drawing NevergradSearch Multi-objective nevergrad wrapper optimizer, budget_size, num_workers

Variable Types & Hyperparameter Spaces ๐ŸŒ

Variable Type Space Specification
drawing real Real-valued Dict: begin, end, prior/bins (grid)
drawing integer Integer-valued Dict: begin, end, prior/bins (grid)
drawing categorical Categorical List: Values to search over

Installation โณ

A PyPI installation is available via:

pip install mle-hyperopt

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/RobertTLange/mle-hyperopt.git
cd mle-hyperopt
pip install -e .

Further Options ๐Ÿšด

Saving & Reloading Logs ๐Ÿช

# Storing & reloading of results from .pkl
strategy.save("search_log.json")
strategy = RandomSearch(..., reload_path="search_log.json")

# Or manually add info after class instantiation
strategy = RandomSearch(...)
strategy.load("search_log.json")

Search Decorator ๐Ÿงถ

from mle_hyperopt import hyperopt

@hyperopt(strategy_type="grid",
          num_search_iters=25,
          real={"x": {"begin": 0., "end": 0.5, "bins": 5},
                "y": {"begin": 0, "end": 0.5, "bins": 5}})
def circle(config):
    distance = abs((config["x"] ** 2 + config["y"] ** 2))
    return distance

strategy = circle()

Storing Configuration Files ๐Ÿ“‘

# Store 2 proposed configurations - eval_0.yaml, eval_1.yaml
strategy.ask(2, store=True)
# Store with explicit configuration filenames - conf_0.yaml, conf_1.yaml
strategy.ask(2, store=True, config_fnames=["conf_0.yaml", "conf_1.yaml"])

Retrieving Top Performers & Visualizing Results ๐Ÿ“‰

# Get the top k best performing configurations
id, configs, values = strategy.get_best(top_k=4)

# Plot timeseries of best performing score over search iterations
strategy.plot_best()

# Print out ranking of best performers
strategy.print_ranking(top_k=3)

Refining the Search Space of Your Strategy ๐Ÿช“

# Refine the search space after 5 & 10 iterations based on top 2 configurations
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 1,
                                                "end": 5,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]},
                        search_config={"refine_after": [5, 10],
                                       "refine_top_k": 2})

# Or do so manually using `refine` method
strategy.tell(...)
strategy.refine(top_k=2)

Note that the search space refinement is only implemented for random, SMBO and nevergrad-based search strategies.

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue ๐Ÿค— .

Comments
  • [FEATURE] Hyperband

    [FEATURE] Hyperband

    Hi! I was wondering if the Hyperband hyperparameter algorithm is something you want implemented.

    I'm willing to spend some time working on it if there's interest.

    opened by colligant 5
  • [FEATURE] Option to pickle the whole strategy

    [FEATURE] Option to pickle the whole strategy

    Right now strategy.save produces a JSON with the log. Any reason you didn't opt for (or have an option of) pickling the whole strategy? Two motivations for this:

    1. Not having to re-init the strategy with all the args/kwargs
    2. Not having to loop through tell! SMBO can take quite some time to do this.
    opened by alexander-soare 4
  • Type checking strategy.log could be made more flexible?

    Type checking strategy.log could be made more flexible?

    Yay first issue! Congrats Robert, this is a great interface. Haven't used a hyperopt library in a while and this felt so easy to pick up.


    For example https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L251

    raises an error if my objective is numpy.float64. Also noticed https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L206

    Could we just have

    isinstance(strategy.log[0]['objective'], (float, int))
    

    which would cover the numpy types?

    opened by alexander-soare 4
  • Successive Halving, Hyperband, PBT

    Successive Halving, Hyperband, PBT

    • [x] Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • [x] Add improvement method indicating if score is better than best stored one
    • [x] Fix logging message when log is stored
    • [x] Add save option for best plot
    • [x] Make json serializer more robust for numpy data types
    • [x] Add possibility to save as .pkl file by providing filename in .save method ending with .pkl (issue #2)
    • [x] Add args, kwargs into decorator
    • [x] Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • [x] Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • [x] Adds synchronous PBT (PBTSearch - issue #4 )
    opened by RobertTLange 1
  • [Feature] Synchronous PBT

    [Feature] Synchronous PBT

    Move PBT ask/tell functionality from mle-toolbox experimental to mle-hyperopt. Is there any literature/empirical evidence for the importance of being asynchronous?

    enhancement 
    opened by RobertTLange 1
Releases(v0.0.7)
  • v0.0.7(Feb 20, 2022)

    Added

    • Log reloading helper for post-processing.

    Fixed

    • Bug fix in mle-search with imports of dependencies. Needed to append path.
    • Bug fix with cleaning nested dictionaries. Have to make sure not to delete entire sub-dictionary.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.6(Feb 20, 2022)

    Added

    • Adds a command line interface for running a sequential search given a python script <script>.py containing a function main(config), a default configuration file <base>.yaml & a search configuration <search>.yaml. The main function should return a single scalar performance score. You can then start the search via:

      mle-search <script>.py --base_config <base>.yaml --search_config <search>.yaml --num_iters <search_iters>
      

      Or short via:

      mle-search <script>.py -base <base>.yaml -search <search>.yaml -iters <search_iters>
      
    • Adds doc-strings to all functionalities.

    Changed

    • Make it possible to optimize parameters in nested dictionaries. Added helpers flatten_config and unflatten_config. For shaping 'sub1/sub2/vname' <-> {sub1: {sub2: {vname: v}}}
    • Make start-up message also print fixed parameter settings.
    • Cleaned up decorator with the help of Strategies wrapper.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jan 5, 2022)

    Added

    • Adds possibility to store and reload entire strategies as pkl file (as asked for in issue #2).
    • Adds improvement method indicating if score is better than best stored one
    • Adds save option for best plot
    • Adds args, kwargs into decorator
    • Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • Adds synchronous PBT (PBTSearch - issue #4)
    • Adds option to save log in tell method
    • Adds small torch mlp example for SH/Hyperband/PBT w. logging/scheduler
    • Adds print welcome/update message for strategy specific info

    Changed

    • Major internal restructuring:
      • clean_data: Get rid of extra data provided in configuration file
      • tell_search: Update model of search strategy (e.g. SMBO/Nevergrad)
      • log_search: Add search specific log data to evaluation log
      • update_search: Refine search space/change active strategy etc.
    • Also allow to store checkpoint of trained models in tell method.
    • Fix logging message when log is stored
    • Make json serializer more robust for numpy data types
    • Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • Update NB to include mle-scheduler example
    • Make PBT explore robust for integer/categorical valued hyperparams
    • Calculate total batches & their sizes for hyperband
    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Oct 24, 2021)

    • Fixes CoordinateSearch active grid search dimension updating. We have to account for the fact that previous coordinates are not evaluated again after switching the active variable.
    • Generalizes NevergradSearch to wrap around all search strategies.
    • Adds rich logging to all console print statements.
    • Updates documentation and adds text to getting_started.ipynb.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 20, 2021)

    • Fixes import bug when using PyPi installation.
    • Enhances documentation and test coverage.
    • Adds search space refinement for nevergrad and smbo search strategies via refine_after and refine_top_k:
    strategy = SMBOSearch(
            real={"lrate": {"begin": 0.1, "end": 0.5, "prior": "uniform"}},
            integer={"batch_size": {"begin": 1, "end": 5, "prior": "uniform"}},
            categorical={"arch": ["mlp", "cnn"]},
            search_config={
                "base_estimator": "GP",
                "acq_function": "gp_hedge",
                "n_initial_points": 5,
                "refine_after": 5,
                "refine_top_k": 2,
            },
            seed_id=42,
            verbose=True
        )
    
    • Adds additional strategy boolean option maximize_objective to maximize instead of performing default black-box minimization.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Oct 16, 2021)

    Base API implementation:

    from mle_hyperopt import RandomSearch
    
    # Instantiate random search class
    strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                            "end": 0.5,
                                            "prior": "log-uniform"}},
                            integer={"batch_size": {"begin": 32,
                                                    "end": 128,
                                                    "prior": "uniform"}},
                            categorical={"arch": ["mlp", "cnn"]})
    
    # Simple ask - eval - tell API
    configs = strategy.ask(5)
    values = [train_network(**c) for c in configs]
    strategy.tell(configs, values)
    
    Source code(tar.gz)
    Source code(zip)
Owner
Robert Lange
Deep Something @ TU Berlin ๐Ÿ•ต๏ธ
Robert Lange
Lightweight Machine Learning Experiment Logging ๐Ÿ“–

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and combination of multi-configuration runs. For a quickstart checkout the notebook blog ??

Robert Lange 65 Dec 8, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.

Swiggy 66 Dec 6, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

null 24 Oct 27, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers.

Pyomo 1.4k Dec 28, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 9, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 1, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

ๆž—ๆ™ฏ 15 Nov 30, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 6, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 7, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 9, 2023
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021