Exemplary lightweight and ready-to-deploy machine learning project

Overview

A lightweight machine learning project

This is an example project for a lightweight and ready-to-deploy machine learning application.

Installation

Install dependencies with Poetry:

$ poetry install

To enforce consistency, make sure you install the pre-commit hooks as well:

$ pre-commit install

Training

Use DVC to check the status of the model:

$ dvc status

and re-train it, if necessary:

$ dvc repro

Usage

Start the server locally:

$ gunicorn application

Alternatively, you can also start it in a Docker container. Build it first:

$ docker build -t machine-learning-application .

and then run it:

docker run -p 8000:8000 machine-learning-application

Example

You can POST requets to the /classification endpoint:

$ curl \
  --request POST \
  --data '{"text": "Die Sopranos ist eine US-amerikanische Fernsehserie"}' \
  http://0.0.0.0:8000/classification
{"label": "show", "probability": 0.8808274865150452}

or check if the server is up and healthy:

$ curl \
  --request GET \
  http://0.0.0.0:8000/health

Profiling

You can also profile the application:

$ python tools/profiling.py

and inspect the stats with SnakeViz:

$ snakeviz request.prof

License

This package is licensed under the terms of the MIT license.

Made with at snapADDY

You might also like...
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

MachineLearningStocks is designed to be an intuitive and highly extensible template project applying machine learning to making stock predictions. machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made this project as a requirement for an internship at Indian Servers. We are now making it open to contribution.

Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

A machine learning project that predicts the price of used cars in the UK
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

Owner
snapADDY GmbH
Official GitHub Organization of the snapADDY GmbH
snapADDY GmbH
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 5, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and combination of multi-configuration runs. For a quickstart checkout the notebook blog ??

Robert Lange 65 Dec 8, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit ?? This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 2, 2023
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies. The framework automatically analyzes trading sessions, and the analysis may be used to train predictive models.

Amichay Oren 458 Dec 24, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 9, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

Vowpal Wabbit 8.1k Dec 30, 2022