An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

Overview

PYPARSVD

DOI Logo

This implementation allows for a singular value decomposition which is:

  1. Distributed using MPI4Py
  2. Streaming - data can be shown in batches to update the left singular vectors
  3. Randomized for further acceleration of any serial components of the overall algorithm.

The streaming algorithm used in this implementation is available in: "Sequential Karhunen–Loeve Basis Extraction and its Application to Images" by Avraham Levy and Michael Lindenbaum. IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000. This algorithm is implemented in Online_SVD_Serial.py.

The distributed computation of the SVD follows the implementation in "Approximate partitioned method of snapshots for POD." by Wang, Zhu, Brian McBee, and Traian Iliescu. Journal of Computational and Applied Mathematics 307 (2016): 374-384. This algorithm is validated in APMOS_Validation/.

The parallel QR algorithm (the TSQR method) required for the streaming feature may be found in "Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures." by Benson, Austin R., David F. Gleich, and James Demmel. 2013 IEEE international conference on big data. IEEE, 2013. This algorithm is validated in Parallel_QR.

The randomized algorithm used to accelerate the computation of the serial SVD in partitioned method of snapshots may be found in "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." by Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. SIAM review 53.2 (2011): 217-288.

To enable this feature set low_rank=True for initializing the online_svd_calculator class object in online_svd_parallel.py

To reproduce results on a shared memory platform (needs atleast 6 available ranks): export OPENBLAS_NUM_THREADS=1 to ensure numpy does not multithread for this experiment.

  1. Run python data_splitter.py to generate exemplar data etc.
  2. Run python online_svd_serial.py for serial deployment of streaming algorithm.
  3. Run mpirun -np 6 python online_svd_parallel.py for parallel/streaming deployment.

Caution: Due to differences in the parallel and serial versions of the algorithm, singular vectors may be "flipped". An orthogonality check is also deployed for an additional sanity check.

Example extractions of left singular vectors and singular values Comparison 1 Comparison 2 Comparison 3

Even the simple problem demonstrated here (8192 spatial points and 800 snapshots) achieves a dramatic acceleration in time to solution from serial to parallelized-streaming implementations (~25X). Note that the key advantage of the parallelized version is the lack of a data-transfer requirement in case this routine is being called from a simulation.

You might also like...
Streaming over lightweight data transformations
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Real-time Object Detection for Streaming Perception, CVPR 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Releases(v1.0)
Owner
Romit Maulik
Argonne Leadership Computing Facility
Romit Maulik
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 4, 2021
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

null 86 Dec 25, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

null 670 Dec 30, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 2, 2023
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022