我仿照DOTA的配置文件写了一个MyDataset类,并只把
CLASSES = ('plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter')
改为了:
CLASSES = 'ship'
以下为运行后自动生成的代码
data_root = '/content/drive/MyDrive/HRSC2016/'
img_norm_cfg = dict(
mean=[70.954, 81.526, 78.456], std=[58.371, 57.745, 50.858], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(512, 512)),
dict(type='RRandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[70.954, 81.526, 78.456],
std=[58.371, 57.745, 50.858],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(512, 512),
flip=False,
transforms=[
dict(type='RResize'),
dict(
type='Normalize',
mean=[70.954, 81.526, 78.456],
std=[58.371, 57.745, 50.858],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='MyDataset',
ann_file='/content/drive/MyDrive/HRSC2016/Train/labelTxt/',
img_prefix='/content/drive/MyDrive/HRSC2016/Train/AllImages/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(512, 512)),
dict(type='RRandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[70.954, 81.526, 78.456],
std=[58.371, 57.745, 50.858],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]),
val=dict(
type='MyDataset',
ann_file='/content/drive/MyDrive/HRSC2016/Test/labelTxt/',
img_prefix='/content/drive/MyDrive/HRSC2016/Test/AllImages/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(512, 512),
flip=False,
transforms=[
dict(type='RResize'),
dict(
type='Normalize',
mean=[70.954, 81.526, 78.456],
std=[58.371, 57.745, 50.858],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='MyDataset',
ann_file='/content/drive/MyDrive/HRSC2016/Test/Annotations/',
img_prefix='/content/drive/MyDrive/HRSC2016/Test/AllImages/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(512, 512),
flip=False,
transforms=[
dict(type='RResize'),
dict(
type='Normalize',
mean=[70.954, 81.526, 78.456],
std=[58.371, 57.745, 50.858],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=12, metric='mAP')
optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.3333333333333333,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=12)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
model = dict(
type='R3Det',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
zero_init_residual=False,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RRetinaHead',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='RAnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[1.0, 0.5, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
frm_cfgs=[dict(in_channels=256, featmap_strides=[8, 16, 32, 64, 128])],
num_refine_stages=1,
refine_heads=[
dict(
type='RRetinaRefineHead',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
assign_by_circumhbbox=None,
anchor_generator=dict(
type='PseudoAnchorGenerator', strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))
],
train_cfg=dict(
s0=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='RBboxOverlaps2D_v1')),
allowed_border=-1,
pos_weight=-1,
debug=False),
sr=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.5,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='RBboxOverlaps2D_v1')),
allowed_border=-1,
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1.0]),
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
work_dir = './work_dirs/r3det_r50_fpn_1x_dota_v1'
gpu_ids = range(0, 1)```
以下为报错:
2022-03-19 09:44:59,167 - mmdet - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
2022-03-19 09:44:59,168 - mmcv - INFO - load model from: torchvision://resnet50
2022-03-19 09:44:59,168 - mmcv - INFO - load checkpoint from torchvision path: torchvision://resnet50
2022-03-19 09:44:59,410 - mmcv - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2022-03-19 09:44:59,444 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
Traceback (most recent call last):
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 52, in build_from_cfg
return obj_cls(**args)
File "/content/drive/MyDrive/Colab/r3det-pytorch-main/r3det/datasets/mydataset1.py", line 47, in init
super(MyDataset, self).init(ann_file, pipeline, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/mmdet/datasets/custom.py", line 95, in init
self.data_infos = self.load_annotations(local_path)
File "/content/drive/MyDrive/Colab/r3det-pytorch-main/r3det/datasets/mydataset1.py", line 102, in load_annotations
label = cls_map[cls_name]
KeyError: 'ship'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "./tools/train.py", line 193, in
main()
File "./tools/train.py", line 169, in main
datasets = [build_dataset(cfg.data.train)]
File "/usr/local/lib/python3.7/dist-packages/mmdet/datasets/builder.py", line 81, in build_dataset
dataset = build_from_cfg(cfg, DATASETS, default_args)
File "/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py", line 55, in build_from_cfg
raise type(e)(f'{obj_cls.name}: {e}')
KeyError: "MyDataset: 'ship'"
目前推测是单类训练导致的问题,因为CSDN上也有人反映:
![image](https://user-images.githubusercontent.com/76859231/159116704-7d0f6225-f09b-4734-a816-1e4c79f85204.png)
想知道大佬有没有解决这个问题的思路呢?