☢️
Audiomer
☢️
Audiomer: A Convolutional Transformer for Keyword Spotting
[ arXiv ] |
[ Previous SOTA ] |
[ Model Architecture ] |
---|
Results on SpeechCommands

Model Architecture

Performer Conv-Attention

Usage
To reproduce the results in the paper, follow the instructions:
- To download the Speech Commands v2 dataset, run:
python3 datamodules/SpeechCommands12.py
- To train Audiomer-S and Audiomer-L on all three datasets thrice, run:
python3 run_expts.py
- To evaluate a model on a dataset, run:
python3 evaluate.py --checkpoint_path /path/to/checkpoint.ckpt --model <model type> --dataset <name of dataset>
. - For example:
python3 evaluate.py --checkpoint_path ./epoch=300.ckpt --model S --dataset SC20
System requirements
- NVIDIA GPU with CUDA
- Python 3.6 or higher.
- pytorch_lightning
- torchaudio
- performer_pytorch