This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Overview

Orientation independent Möbius CNNs





This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Background (tl;dr)

All derivations and a detailed description of the models are found in Section 5 of our paper. What follows is an informal tl;dr, summarizing the central aspects of Möbius CNNs.

Feature fields on the Möbius strip: A key characteristic of the Möbius strip is its topological twist, making it a non-orientable manifold. Convolutional weight sharing on the Möbius strip is therefore only well defined up to a reflection of kernels. To account for the ambiguity of kernel orientations, one needs to demand that the kernel responses (feature vectors) transform in a predictable way when different orientations are chosen. Mathematically, this transformation is specified by a group representation ρ of the reflection group. We implement three different feature field types, each characterized by a choice of group representation:

  • scalar fields are modeled by the trivial representation. Scalars stay invariant under reflective gauge transformations:

  • sign-flip fields transform according to the sign-flip representation of the reflection group. Reflective gauge transformations negate the single numerical coefficient of a sign-flip feature:

  • regular feature fields are associated to the regular representation. For the reflection group, this implies 2-dimensional features whose two values (channels) are swapped by gauge transformations:

Reflection steerable kernels (gauge equivariance):

Convolution kernels on the Möbius strip are parameterized maps

whose numbers of input and output channels depend on the types of feature fields between which they map. Since a reflection of a kernel should result in a corresponding transformation of its output feature field, the kernel has to obey certain symmetry constraints. Specifically, kernels have to be reflection steerable (or gauge equivariant), i.e. should satisfy:

The following table visualizes this symmetry constraint for any pair of input and output field types that we implement:

Similar equivariance constraints are imposed on biases and nonlinearities; see the paper for more details.

Isometry equivariance: Shifts of the Möbius strip along itself are isometries. After one revolution (a shift by 2π), points on the strip do not return to themselves, but end up reflected along the width of the strip:

Such reflections of patterns are explained away by the reflection equivariance of the convolution kernels. Orientation independent convolutions are therefore automatically equivariant w.r.t. the action of such isometries on feature fields. Our empirical results, shown in the table below, confirm that this theoretical guarantee holds in practice. Conventional CNNs, on the other hand, are explicitly coordinate dependent, and are therefore in particular not isometry equivariant.

Implementation

Neural network layers are implemented in nn_layers.py while the models are found in models.py. All individual layers and all models are unit tested in unit_tests.py.

Feature fields: We assume Möbius strips with a locally flat geometry, i.e. strips which can be thought of as being constructed by gluing two opposite ends of a rectangular flat stripe together in a twisted way. Feature fields are therefore discretized on a regular sampling grid on a rectangular domain of pixels. Note that this choice induces a global gauge (frame field), which is discontinuous at the cut.

In practice, a neural network operates on multiple feature fields which are stacked in the channel dimension (a direct sum). Feature spaces are therefore characterized by their feature field multiplicities. For instance, one could have 10 scalar fields, 4 sign-flip fields and 8 regular feature fields, which consume in total channels. Denoting the batch size by , a feature space is encoded by a tensor of shape .

The correct transformation law of the feature fields is guaranteed by the coordinate independence (steerability) of the network layers operating on it.

Orientation independent convolutions and bias summation: The class MobiusConv implements orientation independent convolutions and bias summations between input and output feature spaces as specified by the multiplicity constructor arguments in_fields and out_fields, respectively. Kernels are as usual discretized by a grid of size*size pixels. The steerability constraints on convolution kernels and biases are implemented by allocating a reduced number of parameters, from which the symmetric (steerable) kernels and biases are expanded during the forward pass.

Coordinate independent convolutions rely furthermore on parallel transporters of feature vectors, which are implemented as a transport padding operation. This operation pads both sides of the cut with size//2 columns of pixels which are 1) spatially reflected and 2) reflection-steered according to the field types. The stripes are furthermore zero-padded along their width.

The forward pass operates then by:

  • expanding steerable kernels and biases from their non-redundant parameter arrays
  • transport padding the input field array
  • running a conventional Euclidean convolution

As the padding added size//2 pixels around the strip, the spatial resolution of the output field agrees with that of the input field.

Orientation independent nonlinearities: Scalar fields and regular feature fields are acted on by conventional ELU nonlinearities, which are equivariant for these field types. Sign-flip fields are processed by applying ELU nonlinearities to their absolute value after summing a learnable bias parameter. To ensure that the resulting fields are again transforming according to the sign-flip representation, we multiply them subsequently with the signs of the input features. See the paper and the class EquivNonlin for more details.

Feature field pooling: The module MobiusPool implements an orientation independent pooling operation with a stride and kernel size of two pixels, thus halving the fields' spatial resolution. Scalar and regular feature fields are pooled with a conventional max pooling operation, which is for these field types coordinate independent. As the coefficients of sign-flip fields negate under gauge transformations, they are pooled based on their (gauge invariant) absolute value.

While the pooling operation is tested to be exactly gauge equivariant, its spatial subsampling interferes inevitably with its isometry equivariance. Specifically, the pooling operation is only isometry equivariant w.r.t. shifts by an even number of pixels. Note that the same issue applies to conventional Euclidean CNNs as well; see e.g. (Azulay and Weiss, 2019) or (Zhang, 2019).

Models: All models are implemented in models.py. The orientation independent models, which differ only in their field type multiplicities but agree in their total number of channels, are implemented as class MobiusGaugeCNN. We furthermore implement conventional CNN baselines, one with the same number of channels and thus more parameters (α=1) and one with the same number of parameters but less channels (α=2). Since conventional CNNs are explicitly coordinate dependent they utilize a naive padding operation (MobiusPadNaive), which performs a spatial reflection of feature maps but does not apply the unspecified gauge transformation. The following table gives an overview of the different models:

Data - Möbius MNIST

We benchmark our models on Möbius MNIST, a simple classification dataset which consists of MNIST digits that are projected on the Möbius strip. Since MNIST digits are gray-scale images, they are geometrically identified as scalar fields. The size of the training set is by default set to 12000 digits, which agrees with the rotated MNIST dataset.

There are two versions of the training and test sets which consist of centered and shifted digits. All digits in the centered datasets occur at the same location (and the same orientation) of the strip. The isometry shifted digits appear at uniformly sampled locations. Recall that shifts once around the strip lead to a reflection of the digits as visualized above. The following digits show isometry shifted digits (note the reflection at the cut):

To generate the datasets it is sufficient to call convert_mnist.py, which downloads the original MNIST dataset via torchvision and saves the Möbius MNIST datasets in data/mobius_MNIST.npz.

Results

The models can then be trained by calling, for instance,

python train.py --model mobius_regular

For more options and further model types, consult the help message: python train.py -h

The following table gives an overview of the performance of all models in two different settings, averaged over 32 runs:

The setting "shifted train digits" trains and evaluates on isometry shifted digits. To test the isometry equivariance of the models, we train them furthermore on "centered train digits", testing them then out-of-distribution on shifted digits. As one can see, the orientation independent models generalize well over these unseen variations while the conventional coordinate dependent CNNs' performance deteriorates.

Dependencies

This library is based on Python3.7. It requires the following packages:

numpy
torch>=1.1
torchvision>=0.3

Logging via tensorboard is optional.

You might also like...
Code for our CVPR2021 paper coordinate attention
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Progressive Coordinate Transforms for Monocular 3D Object Detection
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

This repository implements WGAN_GP.
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

PyTorch implementations of the paper:
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

2D Time independent Schrodinger equation solver for arbitrary shape of well
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Owner
Maurice Weiler
AI researcher with a focus on geometric and equivariant deep learning. PhD candidate under the supervision of Max Welling. Master's degree in Physics.
Maurice Weiler
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

Google 3.2k Dec 31, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 7, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora ?? A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 4, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

null 28 Dec 10, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

null 5 Nov 21, 2022