Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

Overview

MAAD: A Model for Attended Awareness in Driving

Install // Datasets // Training // Experiments // Analysis // License

Official PyTorch implementation of MAAD: A Model and Dataset for "Attended Awareness" in Driving invented by the RAD Team at Toyota Research Institute (TRI) Deepak Gopinath, Guy Rosman, Simon Stent, Katsuya Terahata, Luke Fletcher, Brenna Argall, John Leonard.

MAAD affords estimation of attended awareness based on noisy gaze estimates and scene video over time. This learned model additionally affords saliency estimation and refinement of a noisy gaze signal. We demonstrate the performance of the model on a new, annotated dataset that explores the gaze and perceived attended awareness of subjects as they observe a variety of driving scenarios. In this dataset, we provide a surrogate annotated third person estimate of attended awareness as a reproducible supervisory cue.

Paper to be available on Arxiv soon!

Install

You need a machine with recent Nvidia drivers and a GPU with at least 16GB of memory (more for the bigger models at higher resolution). We recommend using conda to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04 and PyTorch 1.7.0):

git clone https://github.com/ToyotaResearchInstitute/att-aware.git
cd att-aware
# if you want to use conda (recommended)
conda env create -f environment.pt170.yml
conda activate pt170

We will list below all commands as if run directly inside the conda environment. If you encounter out of memory issues, try a lower batch_size parameter in the args_file.py.

Datasets

All the datasets are assumed to be downloaded in ~/data/.

Videos

MAAD uses subset of videos (8 videos of urban driving) from th Dr(Eye)ve Dataset. The entire Dr(Eye)ve dataset can be downloaded at Dr(Eye)ve Full Dataset. We collected gaze and attended awareness annotation data on the videos [06, 07, 10, 11, 26, 35, 53, 60]. Each video folder should be located at ~/data/dreyeve/VIDEO_ID

Gaze Dataset

Our complete dataset comprises approximately 24.5 hours of gaze tracking data captured via multiple exposures from different subjects. We recruited 23 subjects (aged 20-55), who each watched a subset of video clips with their heads mounted in a chin-rest after a 9-point calibration procedure. Their primary task was to monitor the driving scene as a safety driver might monitor an autonomous vehicle. While not a perfect substitute for in-car driving data collection, this primary task allowed for the capture of many of the characteristics of attentive driving behavior. In order to explore the effect of the cognitive task difference (vs. in-car data) on the gaze and awareness estimates, subjects viewed the video under different cognitive task modifiers, as detailed in Section~\ref{sec:data:conditions} (data collected with non-null cognitive task modifiers comprise 30% of total captured gaze data). Around 45% of video stimuli were watched more than once, of which 11% (40 minutes) was observed by 16 or more subjects.

The gaze dataset will be made available as a pkl (all_videos_subjects_tasks_gaze_data.pkl) file. Each subjects' gaze data is stored as a pandas dataframe in the pkl file (organized according to video, subject and task id). The pkl file is expected to be located at ~/data/all_videos_subjects_tasks_gaze_data.pkl

Attended Awareness Annotation Dataset

Our complete attended awareness annotation dataset consists of 54019 third-party annotations of approximately 10s long videos from the Gaze Dataset. Annotators watched a video snippet where the subject's gaze was marked by two circles centered at the gaze point. One circle (green) size was set to the diameter of a person's central foveal vision area at the viewing distance. Another circle (red) was set to a diameter twice the foveal vision circle. At the end of the video snippet, a specific location was chosen and the annotators were asked whether they believe the subject has attended to that location on a scale between 1 and 5 (1-no, definitely not aware, 5-yes, definitely aware). Each annotation consists of the following fields:

video_id | query_frame | subject | cognitive_modifier | query_x | query_y | anno_is_aware | anno_is_object | anno_expected_awareness | anno_surprise_factor

Any field which starts with anno is the annotation. For more details refer to supplementary material of the paper. Datasets are assumed to be downloaded in ~/data/datasets/MAAD_ATT_AWARENESS_LABELS.csv (can be a symbolic link).

Both the gaze dataset and the annotation dataset are available as a zipped folder for download [here].

Optic Flow

MAAD uses optic flow of the videos as a side-channel information to perform temporal regularizations. For the purposes of our model, we utilized [RAFT: Recurrent All Pairs Field Transforms for Optical Flow] to generate optic flow. For each video in the dataset, the optic flow model has to be run all frame pairs N frames apart. The current code assumes that the optic flow generated is at half-resolution with a padding of 2 pixels (on each side) along the y direction. These parameters denoted as OPTIC_FLOW_SCALE_FACTOR, OPTIC_FLOW_H_PAD, OPTIC_FLOW_W_PAD can be altered in the att-aware/src/maad/utils/maad_consts.py file to suit your needs.

Optic flow is assumed to be cached as ~/maad_cache/optic_flow/VIDEO_ID/frame_N.npy

Segmentation Masks

MAAD uses segmentation masks for the videos in order to perform diffusivity-based spatial regularization. For the purposes of our model, we used MaskRCNN to generate the segmentation masks for each frame for each video.

Segmentation masks are assumed to be cached as ~/maad_cache/segmentations_from_video/VIDEO_ID/segmentations_frames/frame_N.png

During training, lower resolution mask images will be generated by resizing the full sized masks and will be cached back into the same location as frame_N_ar_{aspect_ratio_reduction_factor}.png.

Training

MAAD model training can be done using the train.py script. Run the following command to train a model using all 8 videos (split into a train and test sets) using the parameter settings used in the ICCV paper. python train.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp Default resolution used is 240 x 135. All training args are present in /att-aware/src/maad/config/args_file.py

Models will be saved at ~/maad/models/TRAINING_HASH_NAME

Experiments

Three different experiments are proposed for MAAD. All experiments are done using the test split. Gaze Denoising and Awareness Estimation uses the trained model for inference. Gaze Calibration experiment involves continued training to optimize the miscalibration transform. All experiment results are saved as jsons in ~/maad/results/

Gaze Denoising

MAAD can be used for denoising noisy gaze estimates by relying on saliency information. The denoising experiment script is located at att-aware/src/scripts/experiment_maad_denoising.py

The script can be run using the following command: python experiment_maad_denoising.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --max_inference_num_batches 1000

Gaze Recalibration

MAAD can be used for recalibration of a miscalibrated gaze (due to errors in DMS). The calibration experiment script is located at att-aware/src/scripts/experiment_maad_calibration.py The calibration experiment script can be run using the follow command:

python experiment_maad_calibration_optimization.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --dropout_ratio '{"driver_facing":0.0, "optic_flow":0.0}'

Note that, the above command assumes that the model used for recalibration was trained using the default cost parameters. It is important that the cost coefficients match the original values. Furthermore, the dropout_ratio for driver_facing gaze module should be set at 0.0 so that gaze is available as a side-channel input to the network at all times. The miscalibration noise levels can be specified using the miscalibration_noise_levels argument.

Awareness Estimation

MAAD can used for attended awareness estimation based on scene context and an imperfect gaze information. The attended awareness estimation script is located at att-aware/src/scripts/experiment_maad_awareness_estimation.py

The attended awareness estimation script can be run using the following command: python experiment_maad_awareness_estimation.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt

Analysis

We have also provided scripts to parse and compute statistics on the results outputted by the experiment scripts. These scripts are available at att-aware/src/scripts/parse_*_data.py where * could be denoising, calibration_optimization, awareness_estimation

The results of the parsing scripts will be outputted directly in the terminal. The parsing scripts can be run using the following commands. python parse_denoising_data.py --results_json_prefix ~/maad/results/GAZE_DENOISING. Assumes that the result of the denoising experiment is in GAZE_DENOISING.json

python parse_awareness_estimation_data.py --results_json_prefix ~/maad/results/AWARENESS_ESTIMATION. Assumes that the result of the awareness estimation experiment is in AWARENESS_ESTIMATION.json

The results of the calibration experiments are expected to stored in files with the following filename convention experiment_type_gaze_calibration_miscalibration_noise_level_NOISELEVEL_optimization_run_num_OPTIMIZATIONNUM_FILENAMEAPPEND.json, where NOISELEVEL is in the miscalibration_noise_levels argument in experiment_maad_calibration_optimization.py OPTIMIZATIONNUM goes from 0 to num_optimization_runs-1 and FILENAMEAPPEND is the filename_append argument in the experiment.

python parse_calibration_optimization_data.py --folder_containing_results FOLDER_CONTAINING_JSONS --num_optimization_runs (same val as used in the experiment) --miscalibration_noise_levels (same val as used in the experiment) --filename_append (same val as used in the experiment)

License

The source code is released under the MIT License

You might also like...
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

LSTM model trained on a small dataset of 3000 names written in PyTorch
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is not encountered.

This is the dataset and code release of the OpenRooms Dataset.
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Official Pytorch implementation of paper
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

Comments
  • Att model refactor

    Att model refactor

    This PR is the model refactor. The original cognitive_heat_net class has been split into components.

    A model wrapper class has been introduced for facilitating all the setup procedures that are common for training and inference.

    opened by deepakgopinath 0
  • Att utils refactor

    Att utils refactor

    This PR is for the utils folder for the project. Contains utility functions for training, inference, visualization and experiments. Also contains files with consts used for dataset and experiment results.

    opened by deepakgopinath 0
  • Dataset Refactor

    Dataset Refactor

    1. Base class for Dataset (implements all getters for different caches [ video frame, optic flow, segmentation, gaze data])
    2. Three Derived classes. [Gaze, Att_Labels, Pairwise Gaze]
    3. Cleaned up args file (potentially more clean up to happen later on)
    4. init.py in all folders.
    5. Simple dataset test script.
    opened by deepakgopinath 0
Owner
null
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

null 101 Jan 1, 2023
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

null 184 Dec 11, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
LIAO Shuiying 6 Dec 1, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 4, 2023
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 7, 2023