This is the dataset and code release of the OpenRooms Dataset.

Overview

OpenRooms Dataset Release

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu, Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, Manmohan Chandraker

Dataset Overview

pipeline

This is the webpage for downloading the OpenRooms dataset. We will first introduce the rendered images and various ground-truths. Later, we will introduce how to render your own images based on the OpenRooms dataset creation pipeline. For each type of data, we offer two kinds of formats, zip files and individual folders, so that users can choose whether to download the whole dataset more efficiently or download individual folders for different scenes. To download the file, we recommend the tool Rclone, otherwise users may suffer from slow downloading speed and instability. If you have any questions, please email to [email protected].

We render six versions of images for all the scenes. Those rendered results are saved in 6 folders: main_xml, main_xml1, mainDiffMat_xml, mainDiffMat_xml1, mainDiffLight_xml and mainDiffLight_xml1. All 6 versions are built with the same CAD models. main_xml, mainDiffMat_xml, mainDiffLight_xml share one set of camera views while main_xml1, mainDiffMat_xml1 and mainDiffLight_xml1 share the other set of camera views. main_xml(1) and mainDiffMat_xml(1) have the same lighting but different materials while main_xml(1) and mainDiffLight_xml(1) have the same materials but different lighting. Both the lighting and material configuration of main_xml and main_xml1 are different. We believe this configuration can potentially help us develope novel applications for image editing. Two example scenes from main_xml, mainDiffMat_xml and mainDiffLight_xml are shown in the below.

config

News: We currently only release the rendered images of the dataset. All ground-truths will be released in a few days. The dataset creation pipeline will also be released soon.

Rendered Images and Ground-truths

All rendered images and the corresponding ground-truths are saved in folder data/rendering/data/. In the following, we will detail each type of rendered data and how to read and interpret them. Two example scenes with images and all ground-truths are included in Demo and Demo.zip.

  1. Images and Images.zip: The 480 × 640 HDR images im_*.hdr, which can be read with the python command.

    im = cv2.imread('im_1.hdr', -1)[:, :, ::-1]

    We render images for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  2. Material and Material.zip: The 480 × 640 diffuse albedo maps imbaseColor_*.png and roughness map imroughness_*.png. Note that the diffuse albedo map is saved in sRGB space. To load it into linear RGB space, we can use the following python commands. The roughness map is saved in linear space and can be read directly.

    im = cv2.imread('imbaseColor_1.hdr')[:, :, ::-1]
    im = (im.astype(np.float32 ) / 255.0) ** (2.2)

    We only render the diffuse albedo maps and roughness maps for main_xml(1) and mainDiffMat_xml(1) because mainDiffLight_xml(1) share the same material maps with the main_xml(1).

  3. Geometry and Geometry.zip: The 480 × 640 normal maps imnomral_*.png and depth maps imdepth_*.dat. The R, G, B channel of the normal map corresponds to right, up, backward direction of the image plane. To load the depth map, we can use the following python commands.

    with open('imdepth_1.dat', 'rb') as fIn:
        # Read the height and width of depth
        hBuffer = fIn.read(4)
        height = struct.unpack('i', hBuffer)[0]
        wBuffer = fIn.read(4)
        width = struct.unpack('i', wBuffer)[0]
        # Read depth 
        dBuffer = fIn.read(4 * width * height )
        depth = np.array(
            struct.unpack('f' * height * width, dBuffer ), 
            dtype=np.float32 )
        depth = depth.reshape(height, width)

    We render normal maps for main_xml(1) and mainDiffMat_xml(1), and depth maps for main_xml(1).

  4. Mask and Mask.zip: The 480 × 460 grey scale mask immask_*.png for light sources. The pixel value 0 represents the region of environment maps. The pixel value 0.5 represents the region of lamps. Otherwise, the pixel value will be 1. We render the ground-truth masks for main_xml(1) and mainDiffLight_xml(1).

  5. SVLighting: The (120 × 16) × (160 × 32) per-pixel environment maps imenv_*.hdr. The spatial resolution is 120 x 160 while the environment map resolution is 16 x 32. To read the per-pixel environment maps, we can use the following python commands.

    # Read the envmap of resolution 1920 x 5120 x 3 in RGB format 
    env = cv2.imread('imenv_1', -1)[:, :, ::-1]
    # Reshape and permute the per-pixel environment maps
    env = env.reshape(120, 16, 160, 32, 3)
    env = env.transpose(0, 2, 1, 3, 4)

    We render per-pixel environment maps for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). Since the total size of per-pixel environment maps is 4.0 TB, we do not provide an extra .zip format for downloading. Please consider using the tool Rclone if you hope to download all the per-pixel environment maps.

  6. SVSG and SVSG.zip: The ground-truth spatially-varying spherical Gaussian (SG) parameters imsgEnv_*.h5, computed from this optimization code. We generate the ground-truth SG parameters for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). For the detailed format, please refer to the optimization code.

  7. Shading and Shading.zip: The 120 × 160 diffuse shading imshading_*.hdr computed by intergrating the per-pixel environment maps. We render shading for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  8. SVLightingDirect and SVLightingDirect.zip: The (30 × 16) × (40 × 32) per-pixel environment maps with direct illumination imenvDirect_*.hdr only. The spatial resolution is 30 × 40 while the environment maps resolution is 16 × 32. The direct per-pixel environment maps can be load the same way as the per-pixel environment maps. We only render direct per-pixel environment maps for main_xml(1) and mainDiffLight_xml(1) because the direct illumination of mainDiffMat_xml(1) is the same as main_xml(1).

  9. ShadingDirect and ShadingDirect.zip: The 120 × 160 direct shading imshadingDirect_*.rgbe. To load the direct shading, we can use the following python command.

    im = cv2.imread('imshadingDirect_1.rgbe', -1)[:, :, ::-1]

    Again, we only render direct shading for main_xml(1) and mainDiffLight_xml(1)

  10. SemanticLabel and SemanticLabel.zip: The 480 × 640 semantic segmentation label imsemLabel_*.npy. We provide semantic labels for 45 classes of commonly seen objects and layout for indoor scenes. The 45 classes can be found in semanticLabels.txt. We only render the semantic labels for main_xml(1).

  11. LightSource and LightSource.zip: The light source information, including geometry, shadow and direct shading of each light source. In each scene directory, light_x directory corresponds to im_x.hdr, where x = 0, 1, 2, 3 ... In each light_x directory, you will see files with numbers in their names. The numbers correspond to the light source ID, i.e. if the IDs are from 0 to 4, then there are 5 light sources in this scene.

    • Geometry: We provide geometry annotation for windows and lamps box_*.dat for main_xml(1) only. To read the annotation, we can use the following python commmands.
      with open('box_0.dat', 'rb')  as fIn:
          info = pickle.load(fIn )
      There are 3 items saved in the dictionary, which we list blow.
      • isWindow: True if the light source is a window, false if the light source is a lamp.
      • box3D: The 3D bounding box of the light source, including center center, orientation xAxis, yAxis, zAxis and size xLen, yLen, zLen.
      • box2D: The 2D bounding box of the light source on the image plane x1, y1, x2, y2.
    • Mask: The 120 × 160 2D binary masks for light sources mask*.png. We only provide the masks for main_xml(1).
    • Direct shading: The 120 × 160 direct shading for each light source imDS*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Direct shading without occlusion: The 120 × 160 direct shading with outocclusion for each light source imNoOcclu*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Shadow: The 120 × 160 shadow maps for each light source imShadow*.png. We render the shadow map for main_xml(1) only.
  12. Friction and Friction.zip: The friction coefficients computed from our SVBRDF following the method proposed by Zhang et al. We compute the friction coefficients for main_xml(1) and mainDiffLight_xml(1)

Dataset Creation

  1. GPU renderer: The Optix-based GPU path tracer for rendering. Please refer to the github repository for detailed instructions.
  2. Tileable texture synthesis: The tielable texture synthesis code to make sure that the SVBRDF maps are tileable. Please refer to the github repository for more details.
  3. Spherical gaussian optimization: The code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. Please refer to the github repository for detailed instructions.

The CAD models, environment maps, materials and code required to recreate the dataset will be released soon.

Applications

  1. Inverse Rendering: Trained on our dataset, we achieved state-of-the-arts on some inverse rendering metrics, especially the lighting estimation. Please refer to our github repository for the training and testing code.
  2. Robotics: Our robotics applications will come soon.

Related Datasets

The OpenRooms dataset is built on the datasets listed below. We thank their creators for the excellent contribution. Please refer to prior datasets for license issues and terms of use if you hope to use them to create your own dataset.

  1. ScanNet dataset: The real 3D scans of indoor scenes.
  2. Scan2cad dataset: The alignment of CAD models to the scanned point clouds.
  3. Laval outdoor lighting dataset: HDR outdoor environment maps
  4. HDRI Haven lighting dataset: HDR outdoor environment maps
  5. PartNet dataset: CAD models
  6. Adobe Stock: High-quality microfacet SVBRDF texture maps. Please license materials from the Adobe website.
You might also like...
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

Code release for
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

Comments
  • About the view selection for ScanNet RGBD images

    About the view selection for ScanNet RGBD images

    Hi OpenRooms Team, In the paper in Section 3.4, you state that a specific view selection method is used to determine optimal RGBD images for scenes in ScanNet. Is it possible to provide the information which RGBD image is used for which rendered image, to map the rendered images to the corresponding real images?

    Thanks a lot!

    opened by stefan-ainetter 1
  • S3 Access Denied

    S3 Access Denied

    Hi there, I am in the process of downloading the dataset and have almost completed the downloads but i noticed recently that I was not able to access the s3 download link due to AccessDenied error, may I know how to resolve this? Thank you.

    opened by zuroh 1
  • images look noisy

    images look noisy

    Hi OpenRooms team,

    Thank you for your great work! But when I preview the data, the images are very noisy. Is this due to rendering settings? In your demo video I can see some noise on the wall but that's better than the second image. Do you have any suggestion on how to preprocess your data? Thanks in advance!

    image image
    opened by bytedwang 2
  • Reconstruction of the 3D scenes with the corresponding information

    Reconstruction of the 3D scenes with the corresponding information

    Hi,

    Thanks for the availability of the dataset and the ground truth data. I went through the available elements that you share here in this repository however it is not clear to me whether it is possible to have the 3D reconstruction of the demo scenes rather only the renderings.

    Could you please elaborate a bit on this and whether this is possible or not.

    Thanks.

    opened by ttsesm 1
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashlight or camera with flash.

null 89 Dec 10, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

null 93 Nov 8, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

null 12 Nov 22, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

null 536 Dec 20, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

null 66 Dec 16, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 6, 2023
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022