Unsupervised Representation Learning by Invariance Propagation

Overview

Unsupervised Learning by Invariance Propagation

This repository is the official implementation of Unsupervised Learning by Invariance Propagation.

Pretraining on Natual Images

Train on ImageNet

To train the model(s) in the paper, run this command:

python main.py --exp 'your_path' --n_background 4096 --t 0.2 --blur --cos --network 'resnet50' --nonlinearhead 1 --weight_decay 1e-4

Evaluation

To evaluate the model on ImageNet, run:

python -m downstream.linear_classification.linear_classification --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet50'

Notice that in the paper, to calculate the BFS results, we require to record the id of neighbours of each anchor point. For computational efficiency, we apprximate the BFS results by only concatenating the neighbours of each point, up to L steps. This results may be a little different with the real BFS results due to there exists repeated samples, however it works pretty well, both effectively and efficiently. Pretrained model can be found here.

Train on Cifar

To train the model(s) in cifar10 and cifar100 or svhn, run this command:

# cifar10
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'cifar10'
# cifar100
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'cifar100'
# svhn
python main.py --exp 'your_path' -n_background 4096 --t 0.2 --blur --cos --network 'resnet18_cifar' --nonlinearhead 1 --weight_decay 5e-4 --n_pos 20 --dataset 'svhn'

Evaluation

To train the model(s) in cifar10 and cifar100 run this command:

# cifar10
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'cifar10'
# cifar100
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'cifar100'
# svhn
python -m downstream.linear_classification.eval_linear --gpus '0,1' --exp 'your_exp_path' --pretrained_path 'pretrain_path' --backbone 'resnet18_cifar' --dataset 'svhn'

Pretraining on Defect Classification Dataset

For validate the effectiveness and practicabilities of the proposed algorithms, we can also train and evaluate our method on Defect Detection Dataset.

Train on WM811.

python main.py --gpus '0,1,2' --exp 'output/' --n_background 4096 --t 0.07 --cos --network 'resnet18_wm811' --dataset 'wm811' --nonlinearhead 0 --weight_decay 5e-4

Evaluation

To evaluate the model on WM811, run:

python -m downstream.fine_tune_wm811 --save_folder 'your_output_folder' --model_path 'your_pretrain_model' --model 'resnet18_wm811' --dataset 'wm811' --weight_decay 1e-3 --learning_rate1 0.001 --learning_rate2 0.002 --label_smoothing 0.1 --dropout 0.5
You might also like...
code for paper
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

This is an implementation for the CVPR2020 paper
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

meProp: Sparsified Back Propagation for Accelerated Deep Learning
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

Comments
  • CIFAR config

    CIFAR config

    Hi! Thanks for your inspiring work.

    I notice there is some code about CIFAR training in this repository. Could you please specify one complete config of this part for a fast validation like 'resnet18 + cifar100'?

    Thanks a lot!

    opened by YAaNnGg 2
  • 关于hard negative samples的问题

    关于hard negative samples的问题

    作者您好,非常感谢您能公布代码。

    在您论文Hard Sampling Strategy部分提到N_neg(i) = NM(i) − N (i),并且background set B(i) = N_neg(i) ∪ Nh(i)。但是在objective.py中background set只是减去了self_sim。

    opened by Chunwei-Wu 1
  • 报告两处小问题

    报告两处小问题

    您好,我还是一个初学者。 在复现您的工作时,使用代码中train on cifar 10的代码做了训练,并用相应的evaluate部分想测试下。 装完对应的库以后,显示的却是如下错误:argument for training: error: argument --gpu: invalid int value: '0,1' 我猜测可能是您提供的指令与代码不匹配。 另外这段指令的在readme中的描述写的是train而非evaluate。

    opened by ludysama 0
Owner
FengWang
FengWang
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 4, 2020
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

null 35 Dec 5, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 1, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 2, 2023