The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Overview

ISC-Track1-Submission

The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Required dependencies

To begin with, you should install the following packages with the specified versions in Python, Anaconda. Other versions may work but please do NOT try. For instance, cuda 11.0 has some bugs which bring very bad results. The hardware chosen is Nvidia Tesla V100 and Intel CPU. Other hardware, such as A100, may work but please do NOT try. The stability is not guaranteed, for instance, the Ampere architecture is not suitable and some instability is observed. Please do NOT use AMD CPU, such as EPYC, we observe some instability on DGX server.

  • python 3.7.10
  • pytorch 1.7.1 with cuda 10.1
  • faiss-gpu 1.7.1 with cuda 10.1
  • h5py 3.4.0
  • pandas 1.3.3
  • sklearn 1.0
  • skimage 0.18.3
  • PIL 8.3.2
  • cv2 4.5.3.56
  • numpy 1.16.0
  • torchvision 0.8.2 with cuda 10.1
  • augly 0.1.4
  • selectivesearch 0.4
  • face-recognition 1.3.0 (with dlib of gpu-version)
  • tqdm 4.62.3
  • requests 2.26.0
  • seaborn 0.11.2
  • mkl 2.4.0
  • loguru 0.5.3

Note: Some unimportant packages may be missing, please install them using pip directly when an error occurs.

Pre-trained models

We use three pre-trained models. They are all pre-trained on ImageNet unsupervisedly. To be convenient, we first directly give the pre-trained models as follows, then also the training codes are given.

The first backbone: ResNet-50; The second backbone: ResNet-152; The third backbone: ResNet-50-IBN.

For ResNet-50, we do not pre-train it by ourselves. It is directly downloaded from here. It is supplied by Facebook Research, and the project is Barlow Twins. You should rename it to resnet50_bar.pth.

For ResNet-152 and ResNet-50-IBN, we use the official codes of Momentum2-teacher. We only change the backbone to ResNet-152 and ResNet-50-IBN. It takes about 2 weeks to pre-train the ResNet-152, and 1 week to pre-train the ResNet-50-IBN on 8 V100 GPUs. To be convenient, we supply the whole pre-training codes in the Pretrain folder. The related readme file is also given in that folder.

It should be noted that pre-training processing plays a very important role in our algorithm. Therefore, if you want to reproduce the pre-trained results, please do NOT change the number of GPUs, the batch size, and other related hyper-parameters.

Training

For training, we generate 11 datasets. For each dataset, 3 models with different backbones are trained. Each training takes about/less than 1 day on 4 V100 GPUs (bigger backbone takes longer and smaller backbone takes shorter). The whole training codes, including how to generate training datasets and the link to the generated datasets, are given in the Training folder. For more details, please refer to the readme file in that folder.

Test

To test the performance of the trained model, we perform multi-scale, multi-model, and multi-part testing and ensemble all the scores to get the final score. To be efficient, 33 V100 GPUs are suggested to use. The time for extracting all query images' features using 33 V100 GPUs is about 3 hours. Also extracting and storing training and reference images' features take a lot of time. Please be patient and prepare enough storage to reproduce the testing process. We give all the information to generate our final results in the Test folder. Please reproduce the results according to the readme file in that folder.

You might also like...
AI grand challenge 2020 Repo (Speech Recognition Track)
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

 MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare results and run monte carlo algorithm with them

The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

The AugNet Python module contains functions for the fast computation of image similarity.
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Official implementation of the paper
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

Comments
  • Pre-trained models

    Pre-trained models

    Hi guys, congrats on taking first place! Are you planning to upload models weights? Seems like training with this setup is pretty expensive for ordinary people :)

    opened by ParadiseN1 2
Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

null 912 Jan 8, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

null 1 Jun 2, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 2, 2021
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search?? and Semantic Similarity tasks.

null 224 Jan 4, 2023
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

null 2 Oct 20, 2021