Cloud-based recommendation system

Overview

Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Purpose

One Web app can return if the consumer will buy the product or not when providing user ID and corresponding product SKU.

Services

This project will use services:

AWS: lambda function, Step functions, Glue (job,notebook,crawler), Athena, SNS, S3, Sagemaker, IAM, Dynamodb, API Gateway.

Confluent cloud (kafka) for streaming data.

Project description

  1. Create a bucket on S3 as the storage location of the data lake, store the raw data in the bucket (raw data zone), and then return the data after ETL to the same bucket (curated zone).

  2. Preview the data, determine the data is useful and meaningful for our project. Use AWS Glue crawler to grab corresponding data catalog (in created database and generated table info). Use Athena to do SQL query. This like Apache Hive, it does not change raw data, but do operations above the raw data.

  3. Create and store stream data. Create a kafka topic on Clonfluent cloud and set schema registry for the corresponding stream data, schema sets as confluent_cloud_kafka-->confluent_kafka_topic_schema.json. Set the kafka producer as confluent_cloud_kafka-->confluent_kafka_producer_lambda.py to push stream data to corresponding kafka topic in different partitions (because this project does not have exact source giving real stream data, we produce stream data manually). Set the consumer (confluent connector with AWS lambda) as confluent_cloud_kafka-->confluent_kafka_consumer_lambda.py to poll the stream data in kafka topic and store them in Dynamodb table.

  4. ETL process. Use lambda function to do data transformation operations based on SQL, corresponding scripts in file lambda_functions(ETL). Create Glue job to integrate new dataset and store in curated zone in data lake, scripts is in glue_job-->glue_job_ETL.py. Use step fuctions to orchestrate ETL workflow based on above lambda functions, ASL script is in step_function(workflow)-->step_functions_for_curated.json.

    This part is based on spark, and it is similar with the project in repo: https://github.com/Yi-Ding111/spark-ETL-based-databricks-aws.

  5. Train learning model (XGBoost). Use sagemaker notebook instance to do some kinds more operations like: EDA and feature engineering, use XGBoost framework to train the data, adjust parameters and try different attributes combinations to find the best one. Scripts is in sagemaker-->xgboost_deploy_sagemaker.ipynb.

  6. Deploy learning model. Get deploy endpoint after machine learning. Create lambda function to invoke the sagemaker endpoint to use the trained model, scripts is in sagemaker-->endpoint_interact_lambda.py. Let the lambda function integrate with API gatway (proxy integration) as the backend. Deploy the API gatewat and use the invoked URL for web applications to do interactions.

  7. Store the application output. Use SNS to publish the output to lambda and update the information into Dynamodb table, scripts is in sagemaker-->prediction_store_dynamodb.py


Acknowledgement

This project is completed with the guidance from Leo Lee (JR academy)


Author: YI DING, Leo Lee

Created at: Dec 2021

Contact: [email protected]

You might also like...
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendation of songs similar to them.

Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.

Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

google-cloud-bigtable Apache-2google-cloud-bigtable (🥈31 · ⭐ 3.5K) - Google Cloud Bigtable API client library. Apache-2

Python Client for Google Cloud Bigtable Google Cloud Bigtable is Google's NoSQL Big Data database service. It's the same database that powers many cor

Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive models

OptiPLANT OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive mod

Deep Learning Based Fasion Recommendation System for Ecommerce
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

Implementation of a hadoop based movie recommendation system
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

Sentiment Based Product Recommendation System

Sentiment Based Product Recommendation System The e-commerce business is quite p

Apache Libcloud is a Python library which hides differences between different cloud provider APIs and allows you to manage different cloud resources through a unified and easy to use API

Apache Libcloud - a unified interface for the cloud Apache Libcloud is a Python library which hides differences between different cloud provider APIs

💻  A fully functional local AWS cloud stack. Develop and test your cloud & Serverless apps offline!
💻 A fully functional local AWS cloud stack. Develop and test your cloud & Serverless apps offline!

LocalStack - A fully functional local AWS cloud stack LocalStack provides an easy-to-use test/mocking framework for developing Cloud applications. Cur

Cloud-native, data onboarding architecture for the Google Cloud Public Datasets program
Cloud-native, data onboarding architecture for the Google Cloud Public Datasets program

Public Datasets Pipelines Cloud-native, data pipeline architecture for onboarding datasets to the Google Cloud Public Datasets Program. Overview Requi

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

 MPRNet-Cloud-removal: Progressive cloud removal
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Owner
Yi Ding
Yi Ding
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

LI, Wai Yin 90 Oct 8, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 2, 2023
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 4, 2023
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 3, 2023
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 4, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 6, 2023