Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.
Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.
E-Commerce recommender demo with real-time data and a graph database
🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str
Movies/TV Recommender
recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).
Recommendation System to recommend top books from the dataset
recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als
Spotify API Recommnder System
This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendation of songs similar to them.
A fun hangman style game to guess random movie names with a short summary about the movie.
hang-movie-man Hangman but for movies 😉 This is a fun hangman style game to guess random movie names from the local database and show some summary ab
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.
Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta
Plex-recommender - Get movie recommendations based on your current PleX library
plex-recommender Description: Get movie/tv recommendations based on your current
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)
Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi
Implementation of a hadoop based movie recommendation system
Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p
A python library for implementing a recommender system
python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys
Recommender System Papers
Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021
A TikTok-like recommender system for GitHub repositories based on Gorse
GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories
Fashion Recommender System With Python
Fashion-Recommender-System Thr growing e-commerce industry presents us with a la
Mutual Fund Recommender System. Tailor for fund transactions.
Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte
Book Recommender System Using Sci-kit learn N-neighbours
Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library