git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

Overview

USD-Seg

This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector from MMDetection tool box.

Introduction

We present a novel explicit shape representation for instance segmentation. The proposed USD-Seg adopts a linear model, sparse coding with dictionary, for object shapes. First, it learns a dictionary from a large collection of shape datasets, making any shape being able to be decomposed into a linear combination through the dictionary. Hence the name "Universal Shape Dictionary". It adds a simple shape vector regression head to ordinary object detector, giving the detector segmentation ability with minimal overhead.

demo image

License

This project is released under the Apache 2.0 license.

Model

The overall pipeline of USD-Seg: an RGB image is input to the base detector, and the base detector will regress both detection related information (bounding box and class) and the shape vector. Then the mask will be decoded by simple multiplication between shape vector and dictionary atoms, followed by proper resize and threshold operations. demo image

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see GETTING_STARTED.md for the basic usage of MMDetection.
We follow the original usage of mmdetection framework. You can use configs for usd-seg in /configs/usdseg/ to train from scratch.

Citation

If you use this toolbox or benchmark in your research, please cite this project and mmdetection.

@article{USD-Seg,
  title   = {Learning Universal Shape Dictionary for Realtime Instance Segmentation},
  author  = {Tang, Tutian and Xu, Wenqiang and Ye, Ruolin and Yang, Lixin and Lu, Cewu},
  journal= {arXiv preprint arXiv:2012.01050},
  year={2020}
}

Contact

This repo is currently maintained by Tutian tang (@ElectronicElephant)and Ruolin Ye (@YoruCathy). Other core developers include Wenqiang Xu (@WenqiangX). For technical details, please feel free to contact the authors directly via Email.

You might also like...
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

This repo is a PyTorch implementation for Paper
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to your questions. This repo is almost the same with Another-Version, and you can also refer to that version.

Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Comments
  • USD-Seg on MM-detection Issue Tracker

    USD-Seg on MM-detection Issue Tracker

    • [x] https://github.com/YoruCathy/usd_seg/commit/ca2b6c4e4a7fe9d5680ddc4a2f2e33e724dc3758#r37498761

    • [x] https://github.com/YoruCathy/usd_seg/commit/ca2b6c4e4a7fe9d5680ddc4a2f2e33e724dc3758#r37499831

    • [x] Use cv2 / mmcv to resize images

    • [ ] always use --no-ff option to merge

    opened by ElectronicElephant 0
  • shape dictionary

    shape dictionary

    Hi! Sorry to bother you. Does the code of Shape Dictionary include in the git? I mean the generation of shape dictionary,I don't find it in your code. If you could offer the part of code,I would appreciate it!

    opened by XiangYangyang592 1
Owner
Ruolin Ye
HSEFZ 18 @HSEFZ →SJTU 22, Information Engineering @sjtu @MVIG-SJTU
Ruolin Ye
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

null 61 Dec 21, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

null 37 Dec 4, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

null 35 Sep 8, 2021
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 5, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

null 130 Dec 13, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

null 42 Nov 17, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022