Full-featured Decision Trees and Random Forests learner.

Overview

CID3

Latest Release License Github All Releases GitHub Follow Twitter Follow

This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query trees and Random Forests and to fill out an unlabeled file with the predicted classes. Documentation is not yet available, although the program options can be shown with command:

% java -jar cid3.jar -h

usage: java -jar cid3.jar
 -a,--analysis <name>    show causal analysis report
 -c,--criteria <name>    input criteria: c[Certainty], e[Entropy], g[Gini]
 -f,--file <name>        input file
 -h,--help               print this message
 -o,--output <name>      output file
 -p,--partition          partition train/test data
 -q,--query <type>       query model, enter: t[Tree] or r[Random forest]
 -r,--forest <amount>    create random forest, enter # of trees
 -s,--save               save tree/random forest
 -t,--threads <amount>   maximum number of threads (default is 500)
 -v,--validation         create 10-fold cross-validation
 -ver,--version          version

List of features

  • It uses a new Certainty formula as splitting criteria.
  • Provides causal analysis report, which shows how some attribute values cause a particular classification.
  • Creates full trees, showing error rates for train and test data, attribute importance, causes and false positives/negatives.
  • If no test data is provided, it can split the train dataset in 80% for training and 20% for testing.
  • Creates random forests, showing error rates for train and test data, attribute importance, causes and false positives/negatives. Random forests are created in parallel, so it is very fast.
  • Creates 10 Fold Cross-Validation for trees and random forests, showing error rates, mean and Standard Error and false positives/negatives. Cross-Validation folds are created in parallel.
  • Saves trees and random forests to disk in a compressed file. (E.g. model.tree, model.forest)
  • Query trees and random forest from saved files. Queries can contain missing values, just enter the character: “?”.
  • Make predictions and fill out cases files with those predictions, either from single trees or random forests.
  • Missing values imputation for train and test data is implemented. Continuous attributes are imputed as the mean value. Discrete attributes are imputed as MODE, which selects the value that is most frequent.
  • Ignoring attributes is implemented. In the .names file just set the attribute type as: ignore.
  • Three different splitting criteria can be used: Certainty, Entropy and Gini. If no criteria is invoked then Certainty will be used.

Example run with titanic dataset

user@User-MBP datasets % java -jar cid3.jar -f titanic

CID3 [Version 1.1]              Saturday October 30, 2021 06:34:11 AM
------------------
[ ✓ ] Read data: 891 cases for training. (10 attributes)
[ ✓ ] Decision tree created.

Rules: 276
Nodes: 514

Importance Cause   Attribute Name
---------- -----   --------------
      0.57   yes ············ Sex
      0.36   yes ········· Pclass
      0.30   yes ··········· Fare
      0.28   yes ······· Embarked
      0.27   yes ·········· SibSp
      0.26   yes ·········· Parch
      0.23    no ············ Age


[==== TRAIN DATA ====] 

Correct guesses:  875
Incorrect guesses: 16 (1.8%)

# Of Cases  False Pos  False Neg   Class
----------  ---------  ---------   -----
       549         14          2 ····· 0
       342          2         14 ····· 1

Time: 0:00:00

Requirements

CID3 requires JDK 15 or higher.

The data format is similar to that of C4.5 and C5.0. The data file format is CSV, and it could be split in two separated files, like: titanic.data and titanic.test. The class attribute column must be the last column of the file. The other necessary file is the "names" file, which should be named like: titanic.names, and it contains the names and types of the attributes. The first line is the class attribute possible values. This line could be left empty with just a dot(.) Below is an example of the titanic.names file:

0,1.  
PassengerId: ignore.  
Pclass: 1,2,3.  
Sex : male,female.  
Age: continuous.  
SibSp: discrete.  
Parch: discrete.  
Ticket: ignore.  
Fare: continuous.  
Cabin: ignore.  
Embarked: discrete.  

Example of causal analysis

% java -jar cid3.jar -f adult -a education

From this example we can see that attribute "education" is a cause, which is based on the certainty-raising inequality. Once we know that it is a cause we then compare the causal certainties of its values. When it's value is "Doctorate" it causes the earnings to be greater than $50,000, with a probability of 0.73. A paper will soon be published with all the formulas used to calculate the Certainty for splitting the nodes and the certainty-raising inequality, used for causal analysis.

Importance Cause   Attribute Name
---------- -----   --------------
      0.56   yes ······ education

Report of causal certainties
----------------------------

[ Attribute: education ]

    1st-4th --> <=50K  (0.97)

    5th-6th --> <=50K  (0.95)

    7th-8th --> <=50K  (0.94)

    9th --> <=50K  (0.95)

    10th --> <=50K  (0.94)

    11th --> <=50K  (0.95)

    12th --> <=50K  (0.93)

    Assoc-acdm --> <=50K  (0.74)

    Assoc-voc --> <=50K  (0.75)

    Bachelors --> Non cause.

    Doctorate --> >50K  (0.73)

    HS-grad --> <=50K  (0.84)

    Masters --> >50K  (0.55)

    Preschool --> <=50K  (0.99)

    Prof-school --> >50K  (0.74)

    Some-college --> <=50K  (0.81)
You might also like...
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Random-Afg - Afghanistan Random Old Idz Cloner Tools
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Releases(v1.2.4)
Owner
Alejandro Penate-Diaz
Machine learner, web developer, scientist and photo edition enthusiast.
Alejandro Penate-Diaz
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 4, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 5.7k Feb 12, 2021
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 6, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022