Neural Motion Learner With Python

Overview

Neural Motion Learner

Introduction

This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detected skeletal motions in a fully unsupervised manner.

Our model conducts motion generation/interpolation/retargeting based on the learned latent dynamics.

Note that it is an unofficial version of the work so that minimal amounts of codes are provided to demonstrate results.

Full descriptions including title, training codes and data pre-processing methods will be uploaded once the paper of this work is accepted to the conference.

Install

We tested on Python 3.8 and Ubuntu 18.04 LTS.

The architecture is built from Pytorch 1.7.1 with Cuda 11.0.

Creating a conda environment is recommended.

## Download the repository
git clone https://github.com/jinseokbae/neural_motion_learner.git
cd neural_motion_learner
## Create conda env
conda create --name nmotion python=3.8
conda activate nmotion
## modify setup.sh to match your cuda setting
bash setup.sh

Run

Using provided pretrained model, run demo codes to visualize followings:

## Motion generation
python vis_generation.py
## Result will be stored in output/generation

Gen Video

## Motion interpolation
python vis_interpolation.py
## Result will be stored in output/interpolation

Interp Video

## Motion retargeting
python vis_retarget.py
## Result will be stored in output/retarget

Retarget Video

You might also like...
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

Object Depth via Motion and Detection Dataset
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

PyTorch implementation  DRO: Deep Recurrent Optimizer for Structure-from-Motion
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Comments
  • Dataset Generation Process

    Dataset Generation Process

    Hello and thank you for your very interesting work!

    I wanted to ask you, could you please provide us with the dataset generation process? I am mainly interested in the DeformingThings4D splits, and I can see that you are loading numpy arrays. How are you generating these arrays? What is the folder structure?

    Best, Konstantinos

    opened by ktertikas 2
  • Pretrained weights for DeformingThings4D and Robot

    Pretrained weights for DeformingThings4D and Robot

    Thank you, for releasing the code for your amazing paper. I have to perform experiments on non-human sequences like animals and robot. Can you kindly share the trained weights for them as well.

    opened by shubhMaheshwari 1
Owner
Jinseok Bae
Jinseok Bae
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 6, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 5, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

null 44 Jun 27, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

null 185 Dec 26, 2022