Inferring Lexicographically-Ordered Rewards from Preferences

Related tags

Deep Learning lori
Overview

Inferring Lexicographically-Ordered Rewards from Preferences

Code author: Alihan Hüyük ([email protected])

This repository contains the source code necessary to replicate the main experimental results in the AAAI 2022 paper "Inferring Lexicographically-Ordered Reward from Preferences." Our proposed method, LORI, is implemented in files src/main-lori.py and src/main-lori-liver.py for the problem settings considered in the paper: cancer treatment and organ transplantation respectively.

Usage

First, install the required python packages by running:

    python -m pip install -r requirements.txt

Then, the experiments in the paper can be replicated by running:

    ./src/run.sh        # generates the results in Tables 2 and 3
    ./src/run-liver.sh  # generates the reward functions in (10) and (11)

Note that, in order to run the experiments for the transplantation setting, you need to get access to the Organ Procurement and Transplantation Network (OPTN) dataset for liver transplantations as of December 4, 2020.

Citing

If you use this software please cite as follows:

@inproceedings{huyuk2022inferring,
  author={Alihan H\"uy\"uk and William R. Zame and Mihaela van der Schaar},
  title={Inferring lexicographically-ordered rewards from preferences},
  booktitle={Proceedings of the 36th AAAI Conference on Artificial Intelligence},
  year={2022}
}
You might also like...
Official Pytorch implementation of paper
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

A Discord bot that rewards players in Minecraft for sending messages on Discord

MCRewards-Discord-Bot A Discord bot that rewards players in Minecraft for sending messages on Discord How to setup: Download this git as a .zip, or cl

A priority of preferences for teacher assignment problem
A priority of preferences for teacher assignment problem

Genetic-Algorithm-for-Assignment-Problem A priority of preferences for teacher assignment problem Keywords k-partition; clustering; education 4.0 Abst

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the  Destiny 2 Dawning Oven
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

 PREFS is a Python library to store and manage preferences and settings.
PREFS is a Python library to store and manage preferences and settings.

PREFS PREFS is a Python library to store and manage preferences and settings. PREFS stores a Python dictionary in a total human-readable file, the PRE

Artificial intelligence technology inferring issues and logically supporting facts from raw text
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

Compute the fair market value (FMV) of staking rewards at time of receipt.

tendermint-tax A tool to help calculate the tax liability of staking rewards on Tendermint chains. Specifically, this tool calculates the fair market

Defichain maxi - Scripts to optimize performance on defichain rewards

defichain_maxi This script is made to optimize your defichain vault rewards by m

Code for ICLR 2021 Paper,
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

An implementation of ordered dithering algorithm in python as multimedia course project
An implementation of ordered dithering algorithm in python as multimedia course project

One way of minimizing the size of an image is to simply reduce the number of bits you use to represent each pixel.

Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Implementation of an ordered dithering algorithm used in computer graphics
Implementation of an ordered dithering algorithm used in computer graphics

Ordered Dithering Project In this project, we use an ordered dithering method to turn an RGB image, first to a gray scale image and then, turn the gra

nocasedict - A case-insensitive ordered dictionary for Python

nocasedict - A case-insensitive ordered dictionary for Python Overview Class NocaseDict is a case-insensitive ordered dictionary that preserves the or

Owner
Alihan Hüyük
Alihan Hüyük
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 3, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

null 100 Dec 18, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

null 18 Sep 16, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

null 6 Dec 29, 2021
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 8, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 2, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 3, 2022