metamaker
Simple command line tool to train and deploy your machine learning models with AWS SageMaker
Features
metamaker enables you to:
- Build a docker image for training and inference with poetry and FastAPI
- Train your own machine learning model with SageMaker
- Deploy inference endpoint with SageMaker
Usage
- Create poetry project and install metamaker
❯ poetry new your_module
❯ cd your_module
❯ poetry add metamaker
- Define scripts for traning and inference in
main.py
from pathlib import Path
from typing import Any, Dict
from metamaker import MetaMaker
# Import your model, and input/output data classs:
#
# Model ... machine learning model class you want to use
# Input ... input data class for inference
# Output ... ouput data class for inference
#
# Note that the Input and Output are used as type hints to
# create API endpoint with FastAPI like below:
#
# @fastapi_app.post("/invocations")
# def predict(data: Input) -> Output:
# ...
from your_module import Model, Input, Output
app = MetaMaker[Model, Input, Output]()
@app.trainer
def train(
dataset_path: Path,
artifact_path: Path,
hyperparameters: Dict[str, Any],
) -> None:
model = Model(**hyperparameters)
model.train(dataset_path / "train.csv")
model.save(artifact_path / "model.tar.gz")
@app.loader
def load(artifact_path: Path) -> Model:
return Model.load(artifact_path / "model.tar.gz")
@app.predictor
def predict(model: Model, data: Input) -> Output:
return model.predict(data)
- Write metamaker configs in
metamaker.yaml
# Specify metamaker handler like: `path.to.module:app_name`
handler: main:app
# dataset_path and artifact_path should be directories and end with '/'
dataset_path: s3://your-bucket/path/to/dataset/
artifact_path: s3://your-bucket/path/to/artifacts/
hyperparameter_path: ./hparams.yaml
image:
name: metamaker
includes:
- your_module/
- main.py
excludes:
- __pycache__/
- '*.py[cod]'
training:
execution_role: arn:aws:iam::xxxxxxxxxxxx:role/SageMakerExecutionRole
instance:
type: ml.m5.large
count: 1
inference:
endpoint_name: your_endpoint
instance:
type: ml.t2.meduim
count: 1
- Build docker image and push to ECR
metamaker build --deploy .
- Train your model with SageMaker and deploy endpoint
metamker sagemaker train --deploy